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A B S T R A C T

Memory retention and forgetting is typically captured by an Ebbinghaus curve in which there is a sharp initial decrease that follows a negatively accelerated function.
This pattern, typically well fit by a power function and poorly fit by a linear function, has been observed across a variety of materials, tasks, and retention lengths.
However, here we demonstrate, across three experiments, a set of retention patterns that are better fit by a linear function, which is not accounted for by any existing
theory of memory retention and forgetting. This linear pattern was also observed, but not noted, in existing studies from the literature. Our assessment suggests that
higher degrees of learning and meaningfully complex materials may be jointly needed to observe linear forgetting. A simulation is provided as a proof of concept that
linear forgetting may emerge when there are (a) the multiple components of memory traces are lost at different rates, with each following a negatively accelerating
function, and (b) memory responses may be made using degraded memory traces, such as through partial matching and/or reconstructive processes. Linear forgetting
is important to the study of memory retention and forgetting, and it may apply to the bulk of everyday event memories that concern people over long lasting periods
of time.

Introduction

The standard view among memory scientists is that memory re-
tention and forgetting follow a pattern of a large initial rate of forget-
ting that slows in a negatively accelerated manner. This is the classic
Ebbinghaus forgetting curve (Ebbinghaus, 1885), as shown in Fig. 1.
Numerous studies have found this to be a reliable pattern that appears
across a variety of experimental designs and materials (Rubin &
Wenzel, 1996). Moreover, it is generally acknowledged that these re-
tention and forgetting curves are well fit by a power function (Averell &
Heathcote, 2011; Wixted & Carpenter, 2007; Wixted & Ebbesen, 1991).
The power function that is used to account for patterns of retention and
forgetting is m= atr (e.g., Anderson, 2001; Anderson & Tweney, 1997;
Myung, Kim, & Pitt, 2000; Rubin, 1982; Rubin & Wenzel, 1996; Rubin,
Hinton, & Wenzel, 1999; Sikström, 1991; Wixted & Carpenter, 2007;
Wixted & Ebbesen, 1991, 1997) with m being memory, t being the delay
time, r capturing the rate of forgetting, and a being a scaling parameter.
The pattern of data in Ebbinghaus’s original study is well fit by a power
function, r2= .97, but is poorly fit by a linear function, r2= .19. Ac-
cording to a power function account, there is a consistent proportional
loss of information in memory across log time. Thus, this version of a
power function serves as the default hypothesis in research on human
memory, and it conveys the idea that, over time, memory retention and
forgetting will show a negatively accelerating pattern.

It is important to note that the observed retention and forgetting

functions reflect some degree of averaging across memory traces, and,
often, several people. This process of averaging may be what produces
the power function. For example, when several exponential functions
with differing loss rates are averaged, the composite function is often
better fit by a power function (Anderson, 2001; Anderson & Tweney,
1997; Murre & Chessa, 2011; Myung et al., 2000; but see Wixted &
Ebbesen, 1997). That said, regardless of whether the retention and
forgetting pattern shown by individual memory traces follows an ex-
ponential or a power function, the basic pattern is negatively accel-
erating, consistent with Ebbinghaus (1885). Thus, the default hypoth-
esis is that memory retention and forgetting, in general, will show a
negatively accelerating pattern, consistent with a power function.

With this well-established regularity in mind, in a recent study,
Radvansky, O’Rear, and Fisher (2017) assessed memory across five
intervals of up to two weeks after learning. The primary aim of this
work was to assess any changes in the differential fan effect (e.g.,
Radvansky & Zacks, 1991) over time using materials that were sen-
tences that described objects in locations (e.g., “The potted palm is in
the hotel”). These materials were memorized to a high criterion, and
memory was tested using timed recognition (in eight separate blocks).
The primary finding was that the recognition test data from this study
revealed that the basic differential fan effect pattern remained largely
intact over this time. In addition to the primary finding, and what is our
focus here, is that the pattern of recognition accuracy did not show a
typical negatively accelerating function. Instead, the retention function
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appeared to be better fit by a linear function, namely m= a – t * r, as is
shown in Fig. 2.

Clearly, the retention and forgetting pattern of the Radvansky et al.
(2017) study differs from the common Ebbinghaus pattern of a nega-
tively accelerating function. Rather, the pattern of forgetting here
better resembles a linear function than a power function. This distinc-
tion is important because with a linear pattern of forgetting, there is not
a constant loss in the proportion of information in memory over log
time, but a constant loss in the amount of information in memory. In
such a case, the proportion of loss actually increases over time. This is
important because, if such a pattern were found to be regular and
consistent, it is not currently accounted for by any existent theories of
memory retention and forgetting, all of which assume a negatively
accelerating function. Given the potential importance of such a reten-
tion pattern, this issue merits a closer examination.

In this paper, we present three experiments. The first is a reanalysis
of the accuracy data reported by Radvansky et al. (2017) to examine the
linearity of the retention and forgetting pattern. The second experiment
was directly aimed at assessing linear forgetting under a similar design
for a period of up to twelve weeks. The third experiment was a further
replication using different materials and learning criterion. After this,
we report the results of a survey of the literature aimed at exploring
whether there are any other sets of data that exhibit linear forgetting,
but which were not noticed or reported by the original investigators.
That is, is this pattern of data robust enough to be observed in studies
done by other researchers, at other times, with different materials and
methods, and for different aims? From this assessment, we derive

factors that need to be present for linear forgetting to be observed,
namely the presence of more meaningfully complex materials that
allow for meaningful association and elaboration, and that these ma-
terials be learned to a relatively high degree. Finally, we report a si-
mulation that captures these qualities, along with the idea that a suc-
cessful memory response may be made using partial information via
processes of partial matching and reconstruction, to provide a proof of
concept for our theoretical account of linear forgetting.

Experiment 1

Experiment 1 is a reanalysis of the Radvansky et al. (2017) dataset
that more explicitly explores the nature of the retention and forgetting
function. Specifically, we assessed the fit of power and linear functions
for the overall accuracy data. According to the default hypothesis,
performance is better fit by a power function, whereas according to an
alternative hypothesis, performance is better fit by a linear function.

Method

Participants: In this study, 200 undergraduate students from the
Department of Psychology at the University of Notre Dame were re-
cruited from the participant pool. There were 40 participants in each of
the five retention interval groups. They received partial course credit
for their participation. This research was approved by the Institutional
Review Board at the University of Notre Dame.

Materials: The study materials consisted of 18 sentences that de-
scribed objects in locations (e.g., “The potted palm is in the hotel”) that
were created in the same manner as previous studies (e.g., Radvansky,
Spieler, & Zacks, 1993). These sentences were generated using a set of
12 objects and 12 locations, and they are listed in Appendix A. Because
the focus of the Radvansky et al. (2017) study was the differential fan
effect, the object and location concepts for this material set each had

Fig. 1. Plots of the Ebbinghaus (1885) retention curve with linear axes on the
top, and logarithmic axes on the bottom.

Fig. 2. Plots of the Radvansky et al. (2017) accuracy data for Block 1 only with
linear axes above and logarithmic axes below.
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1–3 associations. The details of this aspect of the materials and design is
reported in Radvansky et al. (2017).

For the recognition test, the studied probes were the sentences
learned during the first part of the study. Nonstudied probes were
created by re-pairing the objects and locations to form new, nonstudied
sentences. By creating nonstudied sentences in this way, people will be
much less likely to use plausibility judgments (Reder & Anderson, 1980)
to make their recognition decisions.

Procedure: During learning, participants were presented with the
study sentences on a computer screen, one at a time, for seven seconds
each. The materials were presented in black letters on a white back-
ground using 20-point Courier font. The instruction was to memorize
the sentences as efficiently as possible. After viewing all 18 sentences,
participants were then given a cued recall test with questions of the
form “Where is the object?” and “What is in the location?” Participants
responded by typing in their answer into a textbox. After submitting
their responses, they were provided with feedback about the correct-
ness of their responses. If any of their responses were incorrect, they
were provided with the correct answer(s). At the completion of the cued
recall test portion of memorization, the participants then restudied all
18 of the sentences and were tested again. This study-test procedure
continued until participants reached a criterion of two perfect cued
recall tests.

After memorization, and the designated retention interval, partici-
pants were given a recognition test. The retention intervals used in this
study were immediate, one hour, one day, one week, or two weeks
later. For the recognition test, the memory probes were presented one
at a time on the screen with the task of indicating whether the probe
item was studied or not. Participants indicated that a probe sentence
was studied by pressing the left button on a computer mouse, which
was marked with a “Y” for “yes, this sentence was studied.”
Alternatively, participants indicated nonstudied sentences by pressing
the right button, which was marked with an “N” for “no, this sentence
was not studied.” If a person responded incorrectly to any of these
probes, the participant was given feedback in the form “**Error!
Sentence true!**” or “Error! Sentence not true!**.

The recognition test consisted of 8 blocks of 36 trials, composed of
the 18 studied and 18 non-studied sentences, for a total of 288 trials. To
familiarize people with the procedure of the recognition test procedure,
a practice period of 18 trials was provided. For practice, the computer
displayed items that read either “sentence studied” or “sentence not
studied,” and the participants responded accordingly. Because of con-
cerns about additional learning for the individual probe items that may
occur as a result of feedback during recognition testing, only the first
block of trials is analyzed here.

Analysis: The re-analysis of the data for Experiment 1 was aimed at
the pattern of retention and forgetting. Specifically, whether it was
better captured by a power function or a linear function. This was as-
sessed using a Pearson’s coefficient (r2) to convey the proportion of
variance accounted for by the different functions. This common curve-
fitting measurement has the advantage of being simple while still
providing the same amount of information as would an ANOVA (see
Rubin & Wenzel, 1996). Specifically, we compare the power r2 with the
linear r2. In addition, we also report AIC and BIC measures of fit as-
sessment.1 These assessments were done for both overall recognition
averaged across all blocks and then for the first block only.

Results and discussion

Learning Rates. As reported by Radvansky et al. (2017), partici-
pants took 3–10 study-test learning cycles to memorize the sentences
(M=4.8, SE= .08). The number of learning cycles needed did not vary
among the various retention groups, F < 1.

Recognition Data: The data shown in Fig. 2 is the retention pattern
for the first block of trials for the Radvansky et al. (2017) study. Here
the data were poorly fit by a power function, r2= .55, AIC=−13.78,
BIC=−14.95, but well fit by a linear function, r2= .91, AIC=–22.06,
BIC=–23.23. Thus, the pattern of retention and forgetting is far more
consistent with a linear pattern than the prediction of a power function
by the default hypothesis.

Experiment 2

Our re-analysis of the Radvansky et al. (2017) data in Experiment 1
showed evidence of a linear pattern. The aim of Experiment 2 was to
assess whether this pattern of retention and forgetting can be replicated
using different materials. While we were able to address some possible
reasons for this in our reanalysis of that data, there are other possibi-
lities that have yet to be considered. One of these, consistent with the
default hypothesis, is that because in the Radvansky et al. study re-
trieval performance was near ceiling initially, it may not have allowed
for enough time to pass for a drop to a level for the typical negatively
accelerating pattern to be observed. Alternatively, the linear pattern of
forgetting may be a result of the fact that many of the objects and lo-
cations in Experiment 1 had multiple associations because of the as-
sessment of the fan effect. It could be that these associations served as a
basis for priming various elements of other study sentences, thereby
leading to an unusual pattern of retention and forgetting data.

To address this possibility, Experiment 2 was similar to Experiment
1 in that it (a) had a high memorization criterion, (b) used sentences as
materials, (c) included multiple retention intervals, and (d) used ac-
curacy in recognition testing to measure retention. However, there were
several important differences as well. First, Experiment 2 used sen-
tences about people doing activities (e.g., “The student is eating.”) ra-
ther than objects in locations (e.g., “The potted palm is in the hotel.”) to
generalize the findings to different materials. Second, none of the
people or activities in the study sentences had multiple associations
across multiple sentences, as was the case in Experiment 1. Also, be-
cause accuracy performance had not dropped much after two weeks in
the Experiment 1, allowing for the possibility that performance had not
moved off of ceiling performance sufficiently to allow for an observa-
tion of a normal forgetting curve, the retention intervals in Experiment
2 were expanded up to 12weeks. Finally, because the linear pattern of
forgetting was observed even on the first block of trials for Experiment
1, only one recognition block was used rather than the eight. This also
reduces any influences of additional learning that could occur during
testing.

For this study, there are two likely outcomes. First, consistent with
the default hypothesis, a standard negatively accelerating function will
be observed. This would be in line with traditional accounts of memory.
Alternatively, a linear forgetting function would be observed, even with
longer retention intervals. This would be inconsistent with a propor-
tional loss of information in memory over time but would be consistent
with consistent loss in the amount of information lost over time. That is,
there would be an increase in the proportion of memory loss as reten-
tion intervals grew longer. In other words, the rate of forgetting would
be speeding up. There is no prior theory of memory to account for such
a pattern.

Method

Participants. One hundred forty-four students (99 female; age
17–22, M=19.3, SE= .08) native-English speaking were recruited

1 AIC and BIC measures are typically used when different models vary in the
number of parameters, and these measures take these differences into account.
Here, linear and power functions both have the same number of parameters,
thus the AIC and BIC measures are unlikely to provide any new and useful
information. However, these values are included here to emphasize the differ-
ence in r2 value.
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from the University of Notre Dame participant pool in exchange for
partial course credit. They were assigned (16 each) into nine retention
interval groups: immediate testing, 1-day, 3-day, 1-week, 2-week, 4-
week, 6-week, 8-week, and 12-week retention intervals. This research
was approved by the Institutional Review Board at the University of
Notre Dame.

Materials. The study materials were 18 sentences of people doing
activities in the form “The person is activity”, such as “The student is
eating” or “The mailman is swimming”. These sentences were gener-
ated using a set of 18 occupations and 18 activities, and they are listed
in Appendix A. The occupations and activities were randomly paired
without replacement for each person. These sentences were similar to
the object-location sentences of Experiment 1 insofar that they refer to
individual events.

For the recognition test, there were 36 probe sentences. Eighteen of
these were the sentences that the people studied. The other 18 probes
were negatives created by recombining the occupations and activities.
Taking the two sample sentences from the previous paragraph, possible
negative probe sentences could be “The student is swimming.” or “The
mailman is eating.” For the negatives, each person and activity only
occurred once. Both the learning and the testing programs were written
in JavaScript using the jsPsych library (De Leeuw, 2015).

Procedure. Learning took place in the Memory Laboratory at the
University of Notre Dame, and all people followed the same memor-
ization procedure. After providing informed consent, they were led to
individual computers with 22-inch monitors. They were then presented
with the 18 study sentences, one at a time, in random order, for four
seconds each.

After presentation of all 18 study sentences, participants were given
a 36-item cued recall test in which they filled in a sentence blank with
the correct person or activity. For example, a test question could be,
“The ______ is eating.” or “The student is ______.”. In this way, memory for
each person and activity was assessed. These questions were presented
randomly, one at a time, and were self-paced. If people typed in the
wrong answer, they received feedback in the form, “Sorry, [provided
answer] is incorrect. The correct answer is [correct answer].”, such as
“Sorry, ‘baker’ was incorrect. The correct answer was ‘student’.” After
the cued recall test, if any of the questions were incorrect, people re-
turned to the study portion. This study-test cycle continued until people
twice scored perfectly.

Following the appropriate retention interval, people were given a
yes/no recognition test. For this test, people were presented with the
studied and non-studied memory probes. These probes were presented
one a time and in a random order. For each probe, participants re-
sponded by clicking the appropriate button on the screen, and there was
no time limit to respond. Unlike Experiment 1, there was no feedback
during the recognition test.

People in the immediate group took this test after a brief distractor
task involving memorizing seven numbers (from 1 to 10) and recalling
them in the correct order. This was done twice to encourage some
forgetting of the materials. Testing in this group was done on the same
computers as the memorization phase. People in any of the delayed
testing groups received an email with a link to the recognition test. For
the people in the one-day group, this email was sent one hour before
their target testing time. For people in the three-day group, this email
was sent six hours before their target testing time. All other retention
groups received the email 24 h before their target testing time. For
people in all of the delayed retention groups, testing was done on a
personal computer, tablet, or smartphone.

People were asked to take the recognition test in a quiet place and
with enough time. The retention intervals were as follows: 1-day group
(Median deviation=27min), 3-day group (Median deviation=46min),
1-week group (Median deviation=51min), 2-week group (Median de-
viation=44min), 4-week group (Median deviation=66min), 6-week
group (Median deviation=35min), 8-week group (Median devia-
tion=403min), and 12-week group (Median deviation=78min).

Results and discussion

Learning Rates. People took 2 to 8 study-test learning cycles to
memorize the sentences (M=3.6, SE= .09). The number of learning
cycles needed did not vary among the various retention groups, F < 1.

Overall Data Fits. Recognition performance was measured by
overall proportion of hits and correct rejections. As can be seen in
Fig. 3, accuracy remained very high through the first three days,
whereupon it began falling through the remaining retention intervals.
The data were poorly fit by a power function, r2= .42, AIC=−12.29,
BIC=−11.7, but well fit by a linear function, r2= .98, AIC=−40.71,
BIC=−40.12. Thus, similar to Experiment 1 and inconsistent with the
default hypothesis, the data are better described by a linear function.

Experiment 3

The aim of Experiment 3 was to further replicate the linear pattern
of retention and forgetting reported for Experiments 1 and 2 with yet a
different set of materials. Specifically, rather than sentences, this study
used paired associates. The materials were animal-location pairs, such
as Ant-Grotto. Note that although they are word pairs, people are likely
to refer to such materials as referring to events (Radvansky, 2005).
Also, rather than using two study-test learning cycles in which all of the
study list items were repeated until all test questions were answered
correctly within a cycle, a drop-out procedure was used. Specifically, if
a cue resulted in a correct response, then it was dropped from the study
set. However, if a cue was incorrectly responded to, feedback was
provided in the form of presenting the correct pair, and that pair re-
mained in the study set.

Fig. 3. Recognition accuracy in Experiment 2 as a function of time with linear
axes above and logarithmic axes below.
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Method

Participants. One hundred forty four native-English speaking
adults (89 female; age 19–69, M=40.2, SE=1.00) were recruited
from Amazon’s Mechanical Turk (AMT) service. This study was re-
stricted to participants living in the United States. Participants were
assigned (24 each) into six retention interval groups: immediate testing,
1-day, 3-day, 1-week, 10-day, and 2-week delay. Participant age did not
vary between groups, F (5, 138)= 1.19,MSE=145, p= .32, ηp2= .04.
Participants whose A’ performance score was below .8 were removed
on the assumption that they were not doing the task carefully. This
resulted in dropping four participants in the immediate group, two in
the three-day group, four in the one-week group, four in the ten-day
group, and three in the two-week group. No one-day participants
needed to be replaced. This research was approved by the Institutional
Review Board at the University of Notre Dame.

Materials. The study materials were 16 animal-location pairs. To
increase the number of possible combinations, each of the 16 animals
were randomly selected from a larger set of 32 animals, and each of the
16 locations were randomly selected from a larger set of 32 locations
for each participant. The animal and locations concepts used are pro-
vided in Appendix C. The pairs were separated by a hyphen, such as
“Ant – Grotto” or “Deer – Beach”.

For the recognition test, there were 32 probe pairs. Sixteen were the
studied pairs. The other 16 were negatives created by recombining the
animals and locations, similar to Experiments 1 and 2. For the nega-
tives, each animal and location only occurred once. Both the learning
and the testing programs were written in JavaScript using the jsPsych
library (De Leeuw, 2015).

Procedure. Learning took place online. Participants were presented
with the 16 pairs, one at a time, in random order, for seven seconds
each. After presentation of all 16 study pairs, participants were given
two 32-item cued recall tests with a drop-out procedure. In these tests,
each study list item (animal or location) was used as a cue for the
participant to type its corresponding pair. For example, a test question
could be, “Ant - ______” or “______ - Beach”. These questions were pre-
sented randomly, one at a time, and were self-paced. If people typed in
the wrong answer, they received feedback in the form, “Sorry, [provided
answer] was incorrect. The correct pair is [correct pair]”, such as “Sorry,
Hippo was incorrect. The correct pair is Ant - Grotto.” This memor-
ization protocol used a drop-out testing procedure. Specifically, if the
cued-recall answers for a given cue was correct, then that item was
removed from the study set. However, cues that had incorrect answers
remained in the study list. In this way, each of the cued-recall probes
had to be answered correctly once for memorization.

Following the appropriate retention interval, participants were
given a yes/no recognition test. For this test, people were presented
with the studied and non-studied memory probes. These probes were
presented one a time and in a random order. For each one, participants
responded by clicking the appropriate button on the screen. Again, like
Experiment 2, there was no feedback or time limit.

People in the immediate group took this test after a brief distractor
task in which they judged the semantic sensibility of 10 sentences,
presented one at a time. For example, the sentence “It was the stereo
that the fraternity played loudly.” was a semantically sensible item,
whereas “It was the necklace that stole the thief.” was not.

People in any of the delayed testing groups received an email
through AMT’s server with a link to the recognition test. For the people
in the one-day group, this email was sent two hours before their target
testing time. For people in the three-day group, this email was sent six
hours before their target testing time. All other retention groups re-
ceived the email 12 h before their target testing time. For people in all
of the delayed retention groups, testing was done on a personal com-
puter, tablet, or smartphone. Following recognition testing, the se-
mantic sensibility task was given.

The retention intervals were as follows: 1-day group (Median de-
viation=1min), 3-day group (Median deviation=159min), 1-week
group (Median deviation=243min), 10-day group (Median devia-
tion=114min), 2-week group (Median deviation=54min).

Results and discussion

Recognition performance was measured by overall proportion of
hits and correct rejections. As can be seen in Fig. 4 and similar to Ex-
periment 2, accuracy remained high through the first three days before
falling through the remaining retention intervals. The data were poorly
fit by a power function, r2= .49, AIC=−12.05, BIC=−12.68, but
well fit by a linear function, r2= .93, AIC=−23.57, BIC=−24.2.
Thus, similar to Experiments 1 and 2, and inconsistent with the default
hypothesis, the data are better described by a linear function.

Prior studies with linear forgetting

The results of the three experiments reported here suggest that a
reliable linear retention and forgetting pattern can be repeatedly ob-
served. Rather than doing further new data collection, at this point we
chose to assess whether there are any other studies in the literature that
show clear evidence of linear forgetting. This was done because we felt
that it would be more convincing to observe linear forgetting in data
from other labs, at different times, using different materials and pro-
cedures, and for studies that were not done with the aim of testing for
linear forgetting. The primary aim was to use studies in which linear
forgetting is observed to help identify which characteristics they share

Fig. 4. Recognition accuracy in Experiment 3 as a function of time with linear
axes above and logarithmic axes below.
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with our experiments to help describe when linear forgetting would be
more likely to be observed.

To assess whether linear forgetting is observed we surveyed our
database of 97 studies reporting 392 experiments with three or more
retention intervals. We used the following criterion for inclusion. First,
the study needed to have four or more retention intervals. This was
done to ensure that there was enough data to accurately fit a function.2

Second, the study needed retention intervals of at least one day because
we are primarily interested in retention over long periods of time.
Third, a study needed to have a greater linear than power function fit
because our aim here was to find studies in which forgetting that
conforms more to a linear function. Finally, the r2 of the fit for at least
one of the assessed linear functions needed to be at least .75. This
criterion was used to assess when a good linear pattern was observed.

We found several data sets that meet these criteria (Bahrick,
Bahrick, & Wittlinger, 1975; Burtt & Dobell, 1925; Carpenter, Pashler,
Wixted, & Vul, 2008; Cepeda et al., 2009; Cepeda, Vul, Rohrer, Wixted,
& Pashler, 2008; Jeunehomme, Folville, Stawarczyk, Van der Linden, &
D’Argembeau, 2018; Kristo, Janssen, & Murre, 2009; Meeter, Murre, &
Janssen, 2005; Nunoi & Yoshikawa, 2016; Runquist, 1983; Thompson,
Skowronski, Larsen, & Betz, 1996; Wagenaar, 1986). The details of
these studies are provided below. Across these studies, we explored
three methodological characteristics that we considered may lead to
linear retention and forgetting. These are (a) the type of memory test
used, (b) the degree of original learning, and (c) the meaningful com-
plexity of the materials used.

Burtt and Dobell (1925)

Following up on Ebbinghaus's work, Burtt and Dobell (1925) ex-
amined retention for paired associates for up to four weeks. They had
three experiments, where each involved learning 100 commodities
(e.g., perfume) paired with a fictitious brand name (e.g., Pettal). In all
three experiments, each pair was presented twice (in succession) and
memory was tested using recall and recognition after a designated re-
tention interval. Participants returned at each retention interval (thus,
everyone had all retention intervals).

Experiment 1 had 58 participants who were tested at five intervals:
immediate, one-week, two-weeks, three-weeks, and four-weeks. Each
cued recall session consisted of people being given a blank with a set of
20 cues (the commodity) and the task of recalling the product name.
This was followed by a recognition test in which each of the 20 probed
commodities was provided along with five possible pairs: the valid
brand and four alternative brands (it is not stated whether the foil
brands were studied before and paired with other commodities, but this
seems to have been the case). The dependent variable was proportion
correct for both recall and recognition.

For Experiments 2 and 3, they used the same materials as
Experiment 1, and also included conditions in which a subset of the
materials was given an additional learning at a later time. This reduced
the original 100 paired associates from Experiment 1 to 40 that had no
subsequent learning. The retention of these 40 associates with no ad-
ditional learning is of primary concern here. Experiments 2 and 3 also
differed from Experiment 1 in that they had fewer participants (41 and
47, respectively) and only retention intervals that spanned 16
(Experiment 2) and 17 days (Experiment 3).

For these experiments, while the cued recall was better fit by a
power function, recognition showed a more linear pattern. These results
are shown in Table 1, and plots of the recognition data is shown in
Fig. 5. Specifically, for Experiment 1, the recognition data was better fit
with a linear than a power function. The opposite was true for the recall

data.3 For Experiment 2, recognition and recall data were both better fit
by a power function than a linear function. Note that this experiment
also had the smallest sample size. Finally, for Experiment 3, the re-
cognition data was better fit with a linear than a power function, and
the opposite was true for the recall data.

Considering Burtt and Dobell (1925) experiments as a whole, re-
cognition was better fit by a linear than a power function in two of the
three experiments, but cued recall performance was better fit by a
power function. They used meaningfully complex materials of paired
associates of words with related but different meanings. Finally, they
presented these materials more than once during learning.

Bahrick et al. (1975)

In another study, Bahrick et al. (1975) examined the retention of
names and faces of high school classmates over the course of up to
57 years. They used a cross sectional design involving 392 high school
graduates from nine different time period groups since graduation.
Participants had six memory tasks: free recall, name recognition, pic-
ture recognition, picture matching, name matching, and picture cuing.
Although the pattern of retention across tasks was somewhat incon-
sistent, they were all better fit by a linear than a power function, as seen
in Table 1, with name recall and name matching tasks having good
linear fits. A plot of these tasks is provided in Fig. 6. Free recall was
measured by an adjusted mean of the number of correct recalls, and
recognition by an adjusted percentage correct.

This study used multiple memory test types, all of which resulted in
better linear than power function fits, although the linear fits were best
for name recall and name matching. The materials were meaningfully
complex in that they involved more than one component (i.e., pairing
of first and last names). Finally, because these names were for high
school classmates, it is presumed that they had been overlearned during
the participants’ high school years.

Runquist (1983)

Runquist (1983) examined the effect of initial testing upon sub-
sequent retention using paired associates and cued recall testing. In one
experiment, 288 people learned 24 paired associates (presented once or
three times) and then were given a cued recall test for 12 of these pairs.
After a designated retention interval of either immediate, one-hour, six-
hours, two-days, seven-days, or 21-days, participants were given an-
other cued recall test for all 24 pairs. The results, shown in Fig. 7.
Retention of tested items that were presented once or three times, were
better fit by a linear than a power function. In contrast, the retention of
the untested items presented once or three times were better fit with a
power function than a linear function.

This study used cued recall for paired associates of items with dif-
ferent meanings. Moreover, this study showed linear forgetting for the
paired associates that were learned with additional testing, but power
forgetting for the associates that did not receive the learning benefit of
additional testing. This suggests that a greater degree of learning in-
fluences the linearity of the retention function.

Wagenaar (1986)

Wagenaar (1986) examined his own autobiographical memory for

2 That said, some studies with three retention intervals can show stronger
linear than power function forgetting patterns (e.g., Goetschalckx, Moors, &
Wagemans, 2018).

3 Note that we removed the last time point of Experiment 1 in Table 1 because
performance fell to chance by three weeks. If these data are included, the
pattern is not altered much. When this extra time point is included, for re-
cognition the data are still better fit by a linear function, m= .83 * t−.01, r2 =
.90, than a power function, m = .65 * t−.05, r2 = .78, whereas for cued recall
the data are still better fit by a power function, m= .27 * t−.03, r2 = .90, than a
linear function, m = .27 * t −.087, r2 = .59.
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Table 1
Linear and power function fits (in terms of r2) of previously published data, along with values for other components of the corresponding functions.

Publication Data Memory test Meaningfully
complex

Degree of
learning

Power fit Exponent Constant Linear Fit Slope Intercept

Ebbinghaus
Ebbinghaus (1885) Savings No High .97 −.15 .32 .19 −.011 .49

Current Study
Current Study Experiment 1 (all) Recognition Yes High .40 −.01 .94 .82 −.004 .97

Experiment 1 (block
1)

Recognition Yes High .55 −.01 .92 .91 −.008 .97

Experiment 2 Recognition Yes High .42 −.03 .92 .98 −.004 .99
Experiment 3 Recognition Yes High .49 −.02 .89 .93 −.01 .96

Other Linear Fits
Burtt and Dobell (1925) Experiment 1 Cued recall Yes High .89 −.06 .29 .70 −.018 .33

Experiment 1 Recognition Yes High .77 −.04 .66 .97 −.017 .85
Experiment 2 Cued recall Yes High .97 −.23 .11 .56 −.024 .36
Experiment 2 Recognition Yes High .92 −.04 .73 .76 −.017 .86
Experiment 3 Cued recall Yes High .84 −.19 .17 .69 −.026 .44
Experiment 3 Recognition Yes High .78 −.03 .79 .92 −.015 .91

Bahrick et al. (1975) Name Recall Yes High .69 −.06 .93 .90 −.004 .32
Name Recognition Yes High .37 −.03 .89 .51 −.003 .90
Picture Recognition Yes High .03 −.01 .89 .18 −.002 .91
Picture Matching Yes High .16 −.02 .89 .39 −.003 .90
Name Matching Yes High .53 −.06 .93 .90 −.007 .94
Picture Cued Recall Yes High .33 −.13 .58 .48 −.006 .59

Runquist (1983) Tested Items (3
presentation)

Cued Recall Yes High .58 −.09 .67 .93 −.032 .95

Tested Items (1
presentations)

Cued Recall Yes High .55 −.06 .76 .65 −.022 .94

Untested Items (3
presentation)

Cued Recall Yes High .82 −.17 .38 .63 −.029 .68

Untested Items (1
presentation)

Cued Recall Yes Low .77 −.16 .31 .4 −.020 .53

Wagenaar (1986) One Cue Cued Recall Yes High .97 −.46 .35 .77 −.058 .41
Two Cues Cued Recall Yes High .95 −.33 .60 .81 −.075 .68
Three Cues Cued Recall Yes High .86 −.26 .75 .63 −.075 .83
Critical Detail Cued Recall Yes High .90 −.34 .78 .90 −.102 .89

Thompson et al. (1996) Location Cued Recall Yes High .79 −.10 1.5 .94 −.0002 .94
Who With Cued Recall Yes High .58 −.14 1.78 .79 −.0003 .94

Meeter et al. (2005) Experiment 1 Cued Recall Yes Unclear .87 −.16 .79 .75 −.001 .51
Experiment 1 Recognition Yes Unclear .90 −.07 .85 .77 −.001 .70
Experiment 2 Cued Recall Yes Unclear .63 −.08 .43 .35 −.001 .33
Experiment 2 Recognition Yes Unclear .76 −.05 .66 .79 −.001 .57
Experiment 3 Cued Recall Yes Unclear .80 −.14 .67 .56 −.001 .43
Experiment 3 Recognition Yes Unclear .78 −.07 .85 .63 −.001 .68

Cepeda et al. (2008) Experiment Cued Recall Yes High .52 −.17 .66 .76 −.007 .78
Carpenter et al. (2008) Experiment 1- Study-

Test
Cued Recall Yes High .56 −.09 .68 .80 −.014 .84

Experiment 1- Study
Only

Cued Recall Yes High .61 −.10 .63 .78 −.013 .78

Experiment 2- Study-
Test (x 3)

Cued Recall Yes High .44 −.07 .78 .98 −.013 .93

Experiment 2- Study
Only (x 3)

Cued Recall Yes High .56 −.08 .70 .85 −.013 .84

Cepeda et al. (2009) Experiment 1 Cued Recall Yes High .57 −.11 .58 .86 −.044 .82
Experiment 2a Cued Recall Yes High .64 −.12 .63 .76 −.004 .81
Experiment 2b Cued Recall Yes High .61 −.19 .46 .76 −.009 .75

Kristo et al. (2009) Content Recall Yes High .91 −.11 .96 .95 −.006 .85
Time Recall Yes High .96 −.13 1.01 .90 −.006 .87
Detail Recall Yes High .98 −.25 .78 .73 −.007 .58

Nunoi and Yoshikawa (2016) Reminder learning (5
presentations)

Recognition Yes High .34 −.01 .86 .98 −.002 .88

Reminder learning (1
presentation)

Recognition Yes Low .35 −.01 .75 .96 −.003 .79

Spatial learning (5
presentations)

Recognition Yes High .54 −.01 .70 .86 −.003 .74

Spatial learning (1
presentation)

Recognition Yes Low .40 −.01 .61 .98 −.003 .65

Jeunehomme, Filville, Stawarczyk,
Van der Linden, & D'Argembeau
(2018)

Experiment Recall Yes High .56 −.04 39a .91 −.604 46a

The Influence of Degree of Learning
Craig et al. (1972) 7 presentations Recall Yes Some .84 −.10 .35 .63 −.114 .65

14 presentations Recall Yes More .73 −.06 .50 .70 −.098 .74
21 presentations Recall Yes Most .64 −.07 .46 .86 −.107 .72

(continued on next page)
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2402 events over a period of five years. He recorded these events by
providing details as to who was present, what happened, where did it
take place, and when did it occur. Additionally, he recorded a critical
detail to each event, the retrieval of which allowed him to measure of
how well he retained the gist of the event. He probed his memory using
cued recall at half-year intervals. The results for the one, two, and three
cue and critical detail conditions are shown in Fig. 8. Although memory
for units of information in the one, two, and three cue conditions were
better fit by a power function, memory for the critical detail was not.
Wagenaar ascribed memory for the critical detail as memory for the gist

of the event. Consistent with our later account that linear forgetting is
more likely to be observed with more meaningfully complex informa-
tion, this was better fit by a linear function.

This study used cued recall for memories that were likely well-
learned. Moreover, they all seemingly had a high level of meaningful
complexity, although it is unclear how well the details being recalled in
the one, two, and three conditions were integrated and centered in the
event as a whole. In comparison, the critical detail was central to the
event, and better captured the event as a whole.

Table 1 (continued)

Publication Data Memory test Meaningfully
complex

Degree of
learning

Power fit Exponent Constant Linear Fit Slope Intercept

Krueger (1929) 100% Overlearning Recall No Some .87 −.87 .17 .38 −.005 .12
150% Overlearning Recall No More .94 −.20 .37 .65 −.005 .32
200% Overlearning Recall No Most .92 −.21 .46 .54 −.007 .39

a These values reflect the use of “experience units” rather than proportions.

Fig. 5. Plots of Burtt and Dobell (1925) three recognition experiments with linear axes on the left, and logarithmic axes on the right. Experiment 1 is at the top,
followed by Experiment 2, and Experiment 3 at the bottom. The last time point of Experiment 1 was removed because performance fell to chance by three weeks.
Experiments 2 and 3 only involve the materials with no subsequent relearning at later time points.
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Thompson et al. (1996)

In their book on autobiographical memory, Thompson et al. (1996)
report a study where six participants kept a diary over a span of
900 days. At the end of this retention period, these participants were
probed on specific location information (where did the event take
place) or person information (who was with you). The retention pat-
terns for these two sources of information are given in Fig. 9. For both
sources, retention was better fit by a linear function.

Meeter et al. (2005)

Meeter et al. (2005) studied memory for news events for thousands
of participants for a period of up to either one or two years. They did
this via an Internet test in which they gave either cued recall or four-
alternative forced choice recognition tests to news items from different
dates. Their Experiments 1 and 2 tested memory for up to a year later.
Experiment 1 had Dutch participants, and Experiment 2 had a more
international sample. Experiment 3 assessed memory for news items
two years later. The results are shown in Figs. 10 and 11 for recognition
and cued recall tests, respectively. As can be seen, while the data are
better fit by a linear function for the recognition data of Experiment 2,
the rest of the data are better fit by power functions.

This study used both recall and recognition, with a better linear
pattern only emerging when for recognition in only one of three ex-
periments was used. Moreover, while the materials were complex,
namely news events, many of the retrieval questions only probed for
information that was not well-tied to describing the structure of the
event, per se, but were bits of information such as proper names (e.g.,
“Which famous singer died on September, 12, 2003?”). Finally, while
performance was reasonably good, the degree of learning for the news
stories was not controlled, so it is unclear how well some of them were
encoded by participants. Thus, these data may reflect a mixture of well-
learned and poorly-learned information.

Carpenter et al. (2008)

Carpenter et al. (2008) examined the effect of memory tests on the
rate of forgetting. They report three experiments, each of which span a

retention period of up to 42 days. Of interest here are the first two
experiments where participants learned obscure facts under differing
learning conditions that included either repeated study or practical
retrieval after an initial presentation of the facts. Performance was as-
sessed using cued recall where the fact was presented in a question
format with a one-word answer as the target information. The results
for Experiments 1 and 2 are shown in Fig. 12. In all learning and testing
conditions, these data were better fit by a linear function than a power
function.

Cepeda et al. (2008)

A study by Cepeda et al. (2008) examined the effect of spaced
practice on retention by having 1350 participants learn a set of 32 trivia
facts. These facts were presented in a question–answer format (Phase I).
This phase used a drop-out testing procedure where each fact was
presented in question form (e.g., “What European nation consumes the
most spicy Mexican food?”) and incorrect answers were given correct
feedback (e.g., “Norway”) and recycled in the learning set. After all the
facts were answered correctly, Phase I was complete. People then re-
ceived a restudy session after a delay of up to 3.5months (Phase II).
Finally, they took a recall and recognition test one year later (Phase III).
What is of interest here is not the final test performance of Phase III that
was reported by Cepeda et al., but the unpublished data from the
restudy session of Phase II. The delay between Phases I and II was either
immediate, one-day, two-days, seven-days, 21-days, 35-days, 70-days,
or 105-days. During Phase II, the same 32 questions were given twice
through with feedback. Therefore, this performance was a cued-recall
test for the answers to the question probes.

The results, shown in Fig. 13, are the accuracy proportions. These
data were better fit by a linear function than a power function.

This study used cued recall for meaningful information (facts), and
there was a high degree of learning.

Cepeda et al. (2009)

Similar to Cepeda et al. (2008), Cepeda et al. (2009) examined the
effect of spaced practice on retention. What is of concern to us here is
not the result of the final test of Phase III, but the results of the Phase II

Fig. 6. Plots of the name free recall (above) and name matching (below) tasks in Bahrick et al. (1975) with linear axes on the left and logarithmic axes on the right.
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Fig. 7. Plots based on the data from Runquist (1983) Experiment 2 with linear axes on the left and logarithmic axes on the right. The top plot is of retention for items
that received practice testing after three presentations. The second is for items that received practice testing after one presentation. The third is for untested items that
were presented three times. The last is for untested items presented once.
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restudy session that occurred at varying delays after the original
learning of Phase I. In their Experiment 1, Cepeda et al. had 215 40
Swahili-English word pairs. During Phase I, this involved a single pre-
sentation of each pair for seven seconds each, followed by a drop-out
testing procedure in which participants were cued with a Swahili word
and were asked to respond with the English equivalent. Feedback was
provided for all responses. Pairs that were correctly answered twice
were removed from the learning set. For Phase II, participants returned
for a restudy session after 5-minutes, one-day, two-days, four-days,
seven-days, or two-weeks. During this session, they were again given a

cued-recall test with feedback.
For their Experiments 2A and 2B, Cepeda et al. (2009) had two sets

of materials for two different parts. Part A used 23 facts in a question-
answer format, and Part B used 23 photographs of uncommon objects
associated with a fact for each. The Phase I learning session consisted of
a pretest, an initial exposure, and three blocks of tests with feedback.
The Phase II restudy session consisted of two blocks of tests with
feedback. The intervals between Phases I and II were five-minutes, one-
day, seven-days, 28-days, 84-days, or 169-days.

The results of these experiments are shown in Fig. 14. Experiments

Fig. 8. Plots based on the data from Wagenaar (1986) with linear axes on the left and logarithmic axes on the right. The top plot is of retention after one cue. The
second is after two cues. The third is after all three cues. The last is for the critical detail.
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1, 2A, and 2B were better fit by a linear function than a power func-
tion.4 This study used cued recall for paired associates of a word and its
translation. Thus, both words referred to the same meaning. Moreover,
these pairs were learned to a very high level.

Kristo et al. (2009)

Kristo et al. (2009) examined long-term memory for various types of
autobiographical information. They used an online population of 878
people assigned to one of five retention groups: two, seven, 15, 31, or
46 day retention intervals. Participants first logged the details of a
single recent personal event. Then, after a retention interval, they were
asked to recall the details of that one event.

The results of this study are shown in Fig. 15. The qualities of the
autobiographical memories that were better fit by a linear function
were memory for the content of the event (who, where, and what). In
comparison, memory for time (time of day, day of week, day of month,
and month) and other details are better fit by a power function. This
may be due to a better integration of the content information into a
representation of the meaning of the whole event compared to the time
or detail information. Information that is better integrated is better fit
by a linear function, while information that is less well integrated is
better fit by a power function.

This study used recall for a meaningfully complex set of information
(an autobiographical event). Moreover, given that this was an auto-
biographical event selected by the participants, it was likely well-
learned.

Nunoi and Yoshikawa (2016)

Nunoi and Yoshikawa (2016) examined the retention of pictures of
80 novel objects for a period of up to six weeks. During learning, people
were presented with the objects individually for one second each, and
were tasked with judging either the spatial position of the object or
coming up with an idea of what that object reminded them of. Some of
these objects were given five presentation-judgment tasks in a row,
whereas others were just given just one. Although the main aim of this
study was an effect of levels of processing on the preference ratings, it
also tested recognition memory at time intervals of immediate, one-day,
one-week, and six-weeks. The results, shown in Fig. 16, showed that the
data were better fit by a linear than a power function.

For this study, used recognition memory testing for knowledge that
was meaningfully complex by combining an image with either spatial
location knowledge or an event that a person was reminded of.
Furthermore, items with five-presentation conditions had a greater
level of learning.

Jeunehomme et al. (2018)

Finally, a study is by Jeunehomme et al. (2018) investigated the rate
of temporal compression in episodic memory over time as well as other
factors (e.g., goal processing). What is of concern here is that they also
measured the number of episodic details recalled across time. Their
learning phase consisted of 32 participants in four delay groups (128
total) walking around a university campus and doing various activities
at various locations while wearing a small camera. They assessed par-
ticipants’ free recall of the components for these events (e.g., person,
object, thought) either immediately or after a one-day, one-week, or
one-month delays. A plot of the mean number of these components
remembered at each delay is shown in Fig. 17. These data were better
fit by a linear function than a power function.

This study used recall to assess memory for meaningfully complex
information (encountered with real world events) in which the learning
level was higher than a single brief presentation.

Fig. 9. Plots based on Thompson et al. (1996) with linear axes on the left and logarithmic axes on the right. The top plot is for the location information. The bottom
plot is for the who with information.

4 Note that retention reached floor in Experiment 2B by 84 days and remained
at floor at the 168-day time point, thus, we removed the data from the 168-day
point from Table 1. When we include the 168-day data, the pattern of retention
and forgetting artificially appears more curvilinear than linear, simply because
the data had reached floor at that point. When this extra time point is included
for Experiment 2B, the data are similarly well-fit by linear, m=−.005*t+ .68,
r2 = .65, and power functions, m = .41*t−.23, r2 = .66.
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Evaluation

In sum, the studies reviewed above all show linear forgetting in
some or all of their experiments. It should be noted that the studies that
meet our criterion for linear forgetting make up a minority within the
retention literature. Moreover, these studies differ in various respects.
The question at this point is whether there are methodological factors
that create this retention pattern. The factors of memory test type,
degree of learning, and meaningful complexity, raised earlier, and each
considered in turn.

Memory Test Type. One issue that we aimed to address was whe-
ther the observation of linear forgetting was limited to a certain type of
memory retrieval task. In general, this does not seem to be the case.
Specifically, linear forgetting was observed in studies that used free
recall (Bahrick et al., 1975; Jeunehomme et al., 2018), cued recall
(Carpenter et al., 2008; Cepeda et al., 2008; Cepeda et al., 2009; Kristo
et al., 2009; Runquist, 1983; Thompson et al., 1996; Wagenaar, 1986),
and recognition (current study; Burtt & Dobell, 1925; Meeter et al.,
2005; Nunoi & Yoshikawa, 2016). Thus, this finding is not limited to a
particular type of retrieval task.

That said, it also appears to be the case that it is more likely to be
observed with some tasks compare to others. For example, with the data
from the Burtt and Dobell (1925) and Meeter et al. (2005) studies, a
linear forgetting function was observed with recognition data, but not
for with cued recall data. In comparison, for Bahrick et al. (1975), al-
though linear fits were better than power fits throughout, there are

better linear fits with matching and recall tasks than with recognition.
Thus, while the finding is not limited to certain types of memory tasks,
it does appear to be the case that the demands of the task at retrieval
can influence the degree to which a linear forgetting pattern is ob-
served.

Degree of Original Learning. Another factor that could influence
whether linear forgetting is observed is the degree of original learning.
Specifically, in the current experiments, people needed to memorize the
materials to a criterion, rather than a single exposure. Likewise, in
many of the studies reviewed above, learning was greater than a single
exposure and often involved retrieval practice. The exceptions are the
Wagenaar (1986), Thompson et al. (1996), Kristo et al. (2009), and
Jeunehomme et al. (2018) studies in which the memoranda involved
autobiographical experience outside a laboratory which are clearly
better remembered than laboratory materials. In these cases, the rich-
ness of the real-life events constitutes high learning. Meeter et al.
(2005) probed for information that participants had encountered in
news stories at some time in the past, although it is unclear how many
times their participant encountered a given story.

In a laboratory setting, there are a number of ways that the degree
of original learning could be increased, including (a) the duration and
number of exposures to the materials, (b) retrieval practice, and (c)
overlearning after reaching a criterion level of memorization. All of the
laboratory learning studies covered included at least one these ways of
increasing the degree of original learning.

The value of degree of original learning to observing linear

Fig. 10. A graph based on the four alternative forced-choice recognition data from Meeter et al. (2005) with linear axes on the left and logarithmic axes on the right.
The top plots are from Experiment 1. The middle plots are of Experiment 2. The bottom plots are of Experiment 3.
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forgetting is clearly illustrated in a study by Craig, Sternthal, and
Olshan (1972; see also Hellyer, 1962; Postman & Riley, 1959; Youtz,
1941). This study used printed advertisement slides with brand names
as materials and manipulated learning to involve either 7 (100%
overlearning), 14 (200% overlearning), or 21 exposures (300% over-
learning). They then tested free recall of the brand names either im-
mediately, one-day, one-week, or four-weeks later. As shown in Table 1
and Fig. 18, the retention pattern became more linear as the number of
repetitions increases.

While an increased degree of learning appears to be important for
linear forgetting to occur, is it sufficient? The answer seems to be “no”.
For example, a study by Krueger (1929) used word lists and had levels
of overlearning of 100%, 150%, and 200%. He tested recall at one-day,
two-day, four-day, one-week, two-week, and four-week intervals. As
Table 1 and Fig. 19 show, these data were better fit by a power function
than a linear function regardless of the degree of learning. What may
matter is when a higher degree of learning is coupled with materials
that are more meaningfully complex materials that involve associations
of some type to more readily allow for elaborative processing.

Meaningful Complexity. The final factor that we consider here
that could lead to a linear pattern of forgetting is the meaningful
complexity of the materials. In our work, as well as many of the studies
reviewed here, the materials and retrieval task involved some mean-
ingful complexity (e.g., paired associates or sentences). In the current
Experiments 1 and 2, we used sentences involving a meaningful com-
bination of two concepts (ether objects and locations or people and
activities), whereas for Experiment 3, we used paired associates that

could be readily meaningfully combined (animals and locations). Burtt
and Dobell (1925) and Runquist (1983) used paired associates in which
the two meaning of the words needed to be combined. Similarly, the
classmate names from Bahrick et al. (1975) can also be viewed as
paired associates (a first name paired with a last name). Carpenter et al.
(2008), Cepeda et al. (2008), and Cepeda et al. (2009) also used items
that were questions and answers, associated facts and objects, or Eng-
lish-Swahili pairs.5 The Nunoi and Yoshikawa (2016) study involved
elaborating on items with either a spatial position or a prior memory.
Wagenaar (1986), Thompson et al. (1996), Kristo et al. (2009), and
Jeunehomme et al. (2018) assessed memory for real-life events. Thus,
when participants can more easily elaborate on and integrate mean-
ingful and complex materials, rather than just simple items (such as a
nonsense syllable or word), then linear forgetting is more likely to be
observed.

Fig. 11. A plot based on the cued recall data from Meeter et al. (2005) with linear axes on the left and logarithmic axes on the right. The top plots are from
Experiment 1. The middle plots are of Experiment 2. The bottom plots are of Experiment 3.

5 We would not normally expect a pattern of linear forgetting for word-
translation pairings, such as English-Spanish pairings. This is because although
there are two words, there is a single meaning. As such, the likelihood of
meaningful complexity is reduced. In fact, data from studies that use word-
translation pairs are better fit by power than linear functions (e.g., Bahrick,
1984; Wickelgren, 1972). The reason for the observation for linear forgetting
for the English-Swahili pairs may involve the very high level of intense learning
involved, which may have led some participants to engage in elaborative in-
ference making based on the phonological structure of the Swahili words.
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Fig. 12. Plots based on the cued recall data of Experiments 1 and 2 of Carpenter et al. (2008) with linear axes on the left and logarithmic axes on the right. The top
plot is Experiment 1 study-test. The second is Experiment 1 study only. The third is Experiment 2 study-test (3 times). The bottom is Experiment 2 study only (3
times).
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Assessment of factors that influence the observance of linear forgetting

Overall, it appears that the observation of linear forgetting can be
influenced by the type of memory test used, although it is possible to
observe it with different kinds of tests. It also appears to require well-
learned information, and the information needs to be meaningfully
complex and the retrieval task need to tap into the integrated larger
representation. When some or all of these factors are not at play, linear
forgetting may not be observed. For example, when recall but not re-
cognition was used, linear forgetting was not observed in the Burtt and
Dobell (1925) and Meeter et al. (2005) studies. Linear forgetting is also
not observed when the materials were not well-learned, as is clearly
illustrated by the Krueger (1929) data. This may also contribute to the
absence of linear forgetting in two of the three Meeter et al. studies
given that it is unclear how well learned the news stories were to begin
with. Finally, the information needs to be meaningfully complex and
this needs to be assessed by the retrieval task. When some of all of these
elements are no present, then linear forgetting patterns may not be
observed.

For example, a flashbulb memory study by Weaver and Krug (2004)
assessed memory two-days, one-week, one-month, three-months, and
one-year after the attacks on the Pentagon and World Trade Center on
September 11, 2001, and their data are better fit by a power function
(r2= .94) than a linear function (r2= .64). While the memory of the
event was certainly meaningfully complex, (a) they used free recall,
which seemed to reduce the probability of observing linear forgetting,
(b) the experience tested was the context of learning the news rather
than the critical event itself, and so was likely less well learned at first,
and (c) they probed for information that may not have been well in-
tegrated with memory for the event (e.g., “What was the exact time
when you heard about the attacks on the World Trade Center?” and

“Describe in as much detail as possible the clothes you were wearing at
the time you heard the news.”). Overall, while there are some elements
for the observation of liner forgetting here, there are some aspects of
the study that work against it.

Another point that needs to be address is why there are cases where
linear and power function fits are both relatively high. Is there actually
just one type of function that fits all data? Probably not. One possibility
is that there is a mix of the functions in a given data set arising from
variations in the nature of the materials and the participants. Another
important one is the relationship between linear and power function fits
differs when the rate of forgetting are steep or shallow. Fig. 20 shows
linear and power function data and how well they are fit by power and
linear functions, respectively, when the rate of loss is steep or shallow.
When the rate of forgetting is steep, the distinction between the two is
more pronounced. However, as the rate of loss becomes shallower, the
fit of the inappropriate function becomes greater. Thus, when the rate
of forgetting is shallow, it becomes increasingly likely that the pattern
could be well-fit by both types of functions.

For the large part, the evidence from our own work, as well as our
survey of the literature, generally supports our idea that well-learned,
meaningfully complex materials yield linear forgetting over long lasting
periods of time. If we consider the degrees of fit for linear and power
functions, for well-learned and more meaningfully complex materials,
we observe either a good linear fit and a poor power function fit, or a
high fit for both. Thus, we have not found any studies that have higher
degrees of learning and meaningful complexity that are not discussed in
this manuscript. We rarely observe a good power function fit and a poor
linear fit. However, good power function and poor linear fits are ob-
served when the conditions for observing linear forgetting are not met.
Thus, we are confident that linear forgetting patterns are stable and a
reflection of important memory processes.

Theory and simulation

At this point, two factors seem to be jointly important to produce
linear forgetting: a sufficient degree of learning and memory complexity.
Now the questions is why is this the case? To address this, we developed
a theoretical account that can explain such a pattern of data, and we
developed a simulation as a proof of concept of this theoretical account.
This approach incorporates the ideas that this pattern of retention re-
quires a higher degree of learning and that the memory traces be at least
somewhat complex.6 This same simulation is reported in Fisher and
Radvansky (2018) to account for different phases of memory retention in
which there is an initial long-term memory phase in which memory
stabilizes somewhat, followed by an increase in the rate of forgetting
somewhere around seven days. This is why a shift in the retention and
forgetting function appears in some of the simulated data patterns.

Retention assumptions

As noted in the introduction, a linear pattern is not immediately
explained by current theories of retention and forgetting. By itself, the
idea that information is forgotten at a linear pattern is unsatisfactory
because (a) it goes against over a century of forgetting data that largely
show negatively accelerating functions, and (b) there is no explanation
for why the rate of forgetting would increase over time. Therefore,
rather than simply assuming that memory trace information is lost at a
linear rate, our theory and simulation (a) incorporates standard nega-
tively accelerating forgetting functions for information and (b) does not
have increased rates of forgetting over time. In other words, the loss of
information in our theory and simulation is entirely consistent with the
common assumption of retention.

Fig. 13. A plot based on the cued recall data of the restudy session in Cepeda
et al. (2008) with linear axes above and logarithmic axes below.

6 This simulation can be found at http://ec2-52-204-56-150.compute-1.
amazonaws.com/pilot/RetentionSimulationAWS.html.
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For our theory and simulation, what brings about linear forgetting is
this standard forgetting of memory trace components along with an
assumption that memory responses can be made using a partially de-
graded memory trace. This can be done through some sort of partial
matching or reconstructive process.

Simulation characteristics

A brief summary of the simulation is provided here. More details are
provided in Appendix B.

Memory Traces. The simulation assumes that each item was stored
as a vector of individual components (e.g., Hintzman, 1984). These
components may be either (a) encoded from the environment or (b)
inferences drawn from general world knowledge. The precise nature
and organization of these components is not important here.7 What is

important is that any target memory trace can be decomposed into
individual components. For the sake of simplicity for the simulation,
these components are assumed to all have equal strength. That said, the
theory itself is neutral with regard to the precise nature of the com-
ponents that make up a memory trace.

Component Forgetting. For individual components, the theory and
simulation assumes that their decay pattern follows a standard ex-
ponential function, consistent with the idea that the loss of individual
pieces of information may follow an exponential function, but their
aggregate pattern may reflect a power function given enough variance
among the items (Anderson, 2001; Murre & Chessa, 2011). However,
the rate at which each of these components is forgotten can differ. Thus,
there is a constant rate of forgetting for each component. In this way,
the simulation encapsulates a negatively accelerating forgetting func-
tion that is the norm in theories of forgetting. This is avoided in the
simulation by allowing for the occurrence of partial matching or re-
construction to occur during retrieval.

Partial Matching/Reconstruction. A critical aspect of this theory
and simulation is the idea that a memory is not completely forgotten if
some components are not accessible. Instead, we assume that if a suf-
ficient number of components are present, then an accurate response
can be made. This is done either through a sufficient partial match and/
or a sufficient reconstruction of the memory trace to the point where a

Fig. 14. Plots based on the cued recall data of the restudy session in Cepeda et al. (2009) with linear axes on the left and logarithmic axes on the right. The top plot is
for their Experiment 1. The middle plot is Experiment 2a. The bottom plot is Experiment 2b.

7 We cannot match the number of components in the simulation to the
number of components in the memory traces for the sentences used in the ex-
periment. How does one accurately count the number of components? As the
number of critical words? The number of words? The number of syllables? The
number of letters? The number of evoked semantic concepts? The number of
evoked sensory/motor experiences? And so on.
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person is able to produce an accurate response. The specific process of
this partial matching or reconstruction is beyond the concern of this
theory and simulation. What is of concern here is only that there is a
process that allows an accurate memory response to be made based on a
memory containing only a portion of its original constituent compo-
nents.

Memory Storage. Although not specifically relevant here, as re-
ported by Fisher and Radvansky (2018), our theory and simulation also
assume that there are two general memory stores. Following McGaugh
(2000), these are long-term memory (LTM) and long-lasting memory
(LLM). LTM allows for the temporary consolidation of knowledge for a
period of time (i.e., phase I), whereas LLM is for the extended storage of
memories after the retention of information in LTM begins to wane (i.e.,
phase II). In the simulation, memory traces are first encoded into LTM.
During phase I, there is a probability that LTM trace components will be
consolidated and therefore be immune to forgetting while the knowl-
edge is in LTM. Over time, LTM trace components may be transcribed to
LLM, or forgotten. One in LLM, these components may also be for-
gotten.

This characteristic of memory having two retention stores is not
particularly relevant for the understanding of linear forgetting.
However, it is important to note that this characteristic of the simula-
tion influences its overall pattern. Specifically, although average re-
tention may show a strong power fit within both phase I and phase II,
the overall pattern may have a weaker power fit due to differential
forgetting rates between the two phases. This idea that the rate of
forgetting can differ due to a transition between two phases is argued
elsewhere (Fisher & Radvansky, 2018). Of note, the majority of reten-
tion studies to date are restricted in their range so that they only can
capture the retention either within phase I (i.e., these studies do not
have sufficient time points beyond a week) or phase II (i.e., these stu-
dies do not have sufficient time points before a week).

Next, we report the outcome of three simulations. The first is a
demonstration of linear forgetting when there is exponential forgetting
of components and the possibility of partial matching and/or re-
construction from a degraded memory trace. After this, we report two
simulations in which there is either low levels of learning or low
complexity, which, consistent with what we have found in the

Fig. 15. Plots based on the data from Kristo et al. (2009) with linear axes on the left and logarithmic axes on the right. The top plots are based on the content of the
memory (who, what, where). The middle plots are based on the time of the memory (day of week, time of day, day of month, month). The bottom plots are based on
the details (important, unimportant).
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Fig. 16. Plots of Nunoi and Yoshikawa (2016) data with linear axes on the left and logarithmic axes on the right. The top plot is of the recognition score for the group
who leaned the items with deep processing and five presentations. The next plot is of deep processing with 1 presentation. The third plot is of shallow processing with
five presentations. The final plot is of shallow processing with one presentation.
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literature, should show more evidence of negatively accelerating for-
getting.

Linear forgetting simulation

We first simulated a linear pattern of forgetting. This was done by
simulating 48 participants, each retaining 20 memory items. We spe-
cified a .98 probability that each item would be encoded into LTM. The
idea was that the study sentences in our experiments were very well
learned, although small errors may have occurred. Moreover, we as-
sumed a set of ten environmental components for each memory along
with another ten potential inference components. The idea was that
there were likely a number of different components that could be re-
presented from study sentences, and because these referred to an event,
they allowed for the possibility of drawing of a number of inferences.
We set a .50 ± .05 probability for each of these potential inference
components to be drawn. This value was arbitrarily set to convey the
idea inference generation was likely to happen at some chance level.

During retention, we had 30 overall time steps. The probability that
a LTM trace would be consolidated was .2 ± .05 with the idea that
consolidation takes time to occur. The probability for a LTM component
to be transcribed into LLM was set at .1 ± .05 per time step to capture
the idea that consolidation in LTM allows for a slower encoding process
of information into LLM. The loss probability for LTM components was
set .3 ± .1 per unit of time (i.e., there was a 30% probability that a
component, experienced or inferred, would be lost at each time step).
This value captures the idea that knowledge in LTM can be lost quickly
if it is not consolidated. Similarly, the loss probability for a component
in LLM was set at .05 ± .03 per unit of time for the idea that in-
formation in LLM is more durable over time. We set the duration of
consolidation (i.e., phase I) for each LTM trace to be 10 ± 2 time steps

since the onset of retention.
For retrieval we assumed that if at least .40 of a memory trace’s

components were present, then the information could be successfully
retrieved; otherwise, it was counted as forgotten to the point that it was
not sufficiently recoverable. This value was chosen using the idea that,
if part of a sentence of event memory were accessible, then this could
serve as a sufficient basis for a partial match or to reconstruct the rest.
The results of this simulation are shown in Fig. 21. As can be seen, there
was a linear pattern of forgetting. The overall pattern showed a strong
linear fit (r2= 1.00) compared to a power fit (r2= .54). Moreover, if
the data are divided into phase I and II segments, as was done by Fisher
and Radvansky (2018), then the pattern in phase I (i.e., the first 10 time
steps) showed a better linear fit (r2= .98) compared to a power fit
(r2= .63). Likewise, the pattern in phase II (i.e., the last 20 time steps)
showed a better linear fit (r2= 1.00) compared to a power fit
(r2= .93).

Low learning

To show that low levels of learning can move performance away
from linear forgetting toward more negatively accelerating forgetting,
we reran the simulation with all of the same parameters, except that the
initial learning parameter was set at .50 (rather than .98). This was
done to capture the idea that the information was not well learned. The
complexity of the memory trace was unchanged. The results of the si-
mulation are shown in Fig. 22. Although the overall pattern was still
better fit by linear (r2= .92) compared to a power (r2= .61) function,
the difference was less than in the original run with high learning. More
importantly, the phase I data were better fit by a power function
(r2= .87) than a linear function (r2= .84). Similarly, the phase II data
were also better fit by a power function (r2= .97) than a linear function
(r2= .92). It is also notable that, as reported by Fisher and Radvansky
(2018), an indication of two retention phases becomes apparent under
these conditions.

Low complexity

To show that low levels of complexity can also move performance
away from linear forgetting toward more negatively accelerating for-
getting, we reran the simulation with all of the same parameters as the
basic simulation, except that the number of environment components
was set to 4 and the number of possible inference components was set to
1. This was done to capture the idea that the information was not as
complex. Additionally, because the materials are less complex, the
threshold for trace retrieval was increased to .70. This was done to
capture the idea that the lack of complex would require a more com-
plete memory trace for retrieval. That is, we assumed that less complex
materials will have fewer interrelations, and so will be less open to
pattern matching or reconstructive processes. Thus, the threshold is
higher.8 The results of the simulation are shown in Fig. 23. Again, the
overall pattern was still better fit by linear (r2= .85) compared to a
power (r2= .63) function, but the difference was smaller here. More
importantly, the phase I data were better fit by a power function
(r2= .92) than a linear function (r2= .73). Likewise, the phase II data
were also better fit by a power function (r2= .99) than a linear function
(r2= .81).

Approaching floor performance

One concern that can be raised about the simulation results shown
so far is that they appear to imply that a linear pattern will hold

Fig. 17. A plot of the data from Jeunehomme et al. (2018) with linear axes
above and logarithmic axes below.

8While both of these changes can alter the fit of the different functions, both
are done here to capture both changes that theoretically occur when there is
low complexity.
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throughout the retention period, even to the point when floor perfor-
mance is approached. However, this is not the case. Instead, as more
and more components are lost from memory traces, the ability to en-
gage in partial matching and/or reconstruction becomes lost, and the
curvilinear loss pattern of the individual components exerts itself in the
pattern of performance of the observed data.

To demonstrate this, we reran the simulation with all of the same
parameters as the basic simulation, except that the number of timesteps
now went out to 50. The results of the simulation are shown in Fig. 24.
Again, while the overall pattern was still better fit by linear (r2= .89)
compared to a power (r2= .34) function, it can clearly be seen that as
performance approaches floor, the pattern of data become more cur-
vilinear. Thus, patterns of linear forgetting are more likely to observed
at higher levels of performance, consistent with what we have noted in
our section on higher levels of learning.

General discussion

In this paper, we have explored the idea that long-term memory
retention and forgetting may not always follow the default outcome of a
negatively accelerating function, such as power function, as has been
noted since the beginning of the scientific study of human memory
(Ebbinghaus, 1885) in which there is a constant proportional loss of
information over time. In three experiments with data that we col-
lected, we were able to show that, with retention intervals up to
12weeks, we observed a linear pattern of forgetting in which there is a
constant loss in the amount of information, but an increasing propor-
tional loss of information over time.

This finding is not limited to our own work with the research ma-
terials and procedure that we employed. A survey of the literature re-
vealed that linear retention and forgetting patterns appear in the stu-
dies different in other labs, at different times, with different materials,

Fig. 18. Plots of the data from Craig et al. (1972) with linear axes on the left and logarithmic axes on the right. The top plot is the group that received 7 exposures, the
middle plot is of 14 exposures, and the bottom is of 21 exposures.
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and for purposes other than the assessment of whether retention and
forgetting can show a linear pattern. A common thread emerging
looking at this work along with our own is that a pattern of linear re-
tention and forgetting is more likely to be observed when the materials
used are more meaningfully complex and allow for meaningful ela-
boration, and that they were well learned. Moreover, the study by Craig
et al. (1972; see also Hellyer, 1962; Postman & Riley, 1959; Youtz,
1941) clearly suggests that as the degree of learning increases, the more
linear the pattern of retention and forgetting became (see Fig. 24).

Resting on these findings, we advocate for theories of memory that
account for different patterns of retention and forgetting by considering
a number of, hopefully noncontroversial, factors. First, memory traces
are made up of multiple components, and that memory traces of more
complex sets of information will have more components. These com-
ponents may originate externally from information in the environment
or may be generated internally, as with any inferences that people may
make. Second, information is not lost equally in a memory trace.
Different components are lost at different rates. This is clearly evident

in the fact that people can often remember some aspects of an event but
not others over time. Third, consistent with the bulk of the memory
retention and forgetting literature, we assume that the forgetting of
individual components follows a negatively accelerating function. This
keeps the basic Ebbinghaus (1885) retention and forgetting curve.
Fourth, when people engage in a memory retrieval task, they do not
need to have every component of the original set of information intact.
Instead, accurate responses can be generated using partial information.
During recognition, this may be done using a partial match of in-
formation in memory with that in a probe. Similarly, for both re-
cognition and recall, people use some sort of reconstruction process to
recover otherwise forgotten elements of a memory. With all of these
elements, linear forgetting can be observed. Note well that we are not
suggesting that the underlying memory process has a linear character,
but that we believe that there are other noncontroversial factors that,
working together, can produce an observed pattern of data that is more
linear.

To provide further support for this theoretical view, we appealed to

Fig. 19. A plot of the data from Krueger (1929) with linear axes on the left and logarithmic axes on the right. The top plot is the group that received 100%
overlearning, the middle plot is 150% overlearning, and the bottom is 200% overlearning.
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Fig. 20. These plots illustrate how the degree of loss in a function can influence its fit. Note again that power functions are represented by the solid line, and linear
functions are represented by a dashed line. The top plots are of three power functions with a linear x-axis on the left and a logarithmic x-axis on the right. The
exponents are −.5, −.2, and −.05, and the linear fits (r2) are .66, .79, and .84, respectively. The bottom plots are of three linear functions with a linear x-axis on the
left and a logarithmic x-axis on the right. The slopes are −.03, −.02, and −.01, and the power fits (r2) are .75, .80, and .84, respectively. Thus, as the rate of loss
becomes shallower, the fit of the other type of function increases.

Fig. 21. Simulation with high trace complexity and high learning with linear
axes above and logarithmic axes below.

Fig. 22. Simulation with high trace complexity and low learning with linear
axes above and logarithmic axes below.
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a computer simulation as a proof of concept. Using this simulation, we
were able to produce a linear pattern of retention and forgetting, de-
spite the fact that the components of the memory traces are lost fol-
lowing a negatively accelerating function. Moreover, we were also able
to highlight the importance of the degree of learning and the com-
plexity of the memory traces by showing that if these are changed so
that there is either a low level of learning, or the memory traces are
made of only a small number of components, then linear forgetting is
not observed. While the simulation is important, further empirical
evidence is needed to assess ideas about the importance of factors such
as the degree of learning, meaningful complexity, and the use of partial
memory traces. We currently have multiple projects in our laboratory
directly assessing these factors.

An important aim of science is to be predictive. One type of pre-
diction that is absent from much of the research on memory is our
ability to predict how long people will be able to remember sets of
information into the future. This is the promise of retention and for-
getting curves. If all memories were retained in a manner consistent
with a power function, then we could easily set out on an effort of
defining the rates of forgetting of different kinds of information under
different circumstances, and be able to reliably predict future memory
for just about anything. However, the current work shows that not all
information is lost in a manner consistent with such a negatively ac-
celerating function. In fact, if we were to use such a function to predict
all future memory performance, we would wildly miss the mark. Some
types of information follow a linear pattern of retention and forgetting.

Finally, given that so many types of information that are important in
our everyday experiences are meaningfully complex and persist for long
periods of time, such as memories for eyewitnessed events, novels,
films, social experiences, and so on, our ability to predict the fate of
those forms of knowledge critically depends on our first being able to
identify the different patterns of retention that may emerge, and when
they are applicable.

Conclusion

Considering that memory retention has long been thought to con-
sistently conform to a negatively accelerating function (e.g.,
Ebbinghaus, 1885), such as a power function, it is noteworthy that we
were able to show a pattern of retention much better fit by a linear
function. Furthermore, this pattern has appeared in other published
studies, although its presence and significance was overlooked at the
time. This pattern of retention appears to require a combination of
meaningfully complex materials and a sufficiently high learning (to
ensure that the various components of a memory are stored). For a si-
mulation that we created as a proof of concept, linear forgetting may be
a result of a loss of individual trace components at negatively accel-
erating rate (typical forgetting), along with the allowance for the op-
eration of partial matching and/or reconstruction processes. Given that
much of our experiences in everyday life involve complex events and
are often deeply encoded, this linear function may be playing a far
greater role in our memory than has been previously supposed.

Fig. 23. Simulation with low trace complexity and high learning with linear
axes above and logarithmic axes below.

Fig. 24. Simulation with all of the same parameters as the basic simulation,
except that the number of timesteps now went out to 50. Linear axes are above,
and logarithmic axes are below.

J.S. Fisher and G.A. Radvansky Journal of Memory and Language 108 (2019) 104035

24



Appendix A

Objects and Locations used in Radvansky et al. (2017)
Objects
broken window
revolving door
wall clock
welcome mat
oak counter
potted palm
ceiling fan
waste basket
fire extinguisher
cola machine
pay phone
bulletin board

Locations
airport
city hall
bar
movie theater
hotel
ice cream parlor
barber shop
car dealership
office building
public library
high school
laundromat

Appendix B

Materials for Experiment 2
Person
The student
The mailman
The baker
The teacher
The lawyer
The doctor
The dentist
The priest
The zookeeper
The landlord
The salesman
The clerk
The maid
The janitor
The babysitter
The receptionist
The lumberjack
The engineer

Activity
is eating.
is swimming.
is climbing.
is singing.
is dusting.
is stretching.
is running.
is sleeping.
is driving.
is painting.
is shopping.
is writing.
is bicycling.
is showering.
is yelling.
is laughing.
is hunting.
is reading.
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Appendix C

Materials Used for Experiment 3
Animal
Ape Ant
Beaver Bison
Chicken Cow
Deer Dolphin
Eagle Elk
Frog Fox
Goat Goose
Horse Hippo
Lion Lobster
Monkey Mouse
Owl Otter
Pony Panda
Rabbit Robin
Spider Snake
Turtle Turkey
Wolf Walrus

Location
Arch Airport
Beach Bar
Cliff City
Ditch Diner
Forest Farm
Grotto Garden
Hill Hotel
Island Igloo
Meadow Mall
Oasis Office
Park Plaza
Reef Restroom
Stream Stadium
Tunnel Theater
Valley Vet
Waterfall Winery

Appendix D
Memory Retrieval Simulation Details
This simulation is also described in Fisher and Radvansky (2018). The aim of this simulation is to provide a more explicit proof of concept of our account

of retention processes that can produce different patterns of observed data over different retention intervals. That is, the aim of the simulation is to capture
patterns of retention and forgetting over long periods of time. We would like to be clear that the model is agnostic with regard to processes that operate during
encoding at any stage, processes operating in retrieval, and the format of the representation of information in memory.

In terms of encoding, it is assumed that there is some variability in the effectiveness of learning under different circumstances. However, what is
of concern here are the processes operating after the initial encoding processes. For retrieval, while various aspects of stored memory representations
can influence the ease with which a memory search is able to access them, and different retrieval processes can increase or decrease success, for our
purposes we ignore such influences. Presumably, a more complex model could be added on processes operating at retrieval. Instead, we simply
assume that the encoding and retrieval processes are largely similar for a given set of information and emphasize the pattern of retention. The only
retrieval assumption that we make is that, for our simulation if a certain proportion of the memory trace is intact, then it is possible that some sort of
partial matching and reconstructive processes can lead to an accurate response. We do not specify what these processes are, given that this is a
simulation of retention, not retrieval. Similarly, while the simulation does not distinguish between processes operating during recall versus re-
cognition, we do think that for a given retrieval task, similar processes would be operating at different retention intervals. It is important to note that
while forgetting results in a loss of availability, the larger theory is agnostic as to whether forgetting is due to a loss of availability or accessibility.
The retention effects would be the same. We simply are concerned here with whether a memory is capable of being retrieved or not. Finally, while
the simulation uses memory traces that are vectors of components, from a larger theoretical perspective, the same principles could be at work if one
were to assume another representational format.

Simulation Parameters
Participants (N): This is the number of participants simulated.
Memory Traces (m): This is the total number of traces to be retained for each participant. The retrievability of each trace is determined the

retention of its components and the retrieval threshold (ϴ).
Learning Probability (l): This is the probability that any LTM component of any trace will be originally learned.
Environmental Components (C): These are the components of a memory trace that are encoded from the external experience.
Potential Inferential Components (c): These components are encoded from inferential processes using prior knowledge. This reflects the

number of potential inferential components that can be drawn.
Inference Formation Probability (p): This is the probability that a potential inference component will be drawn as determined at the level of the trace.
Overall Time Points (t): This is the total number of time points (simulation cycles) that retention is simulated.
LTM Consolidation (f): This is the probability that a trace in LTM will be fixed by the process of consolidation. When this happens, all the

retained LTM components of a trace become resistant to loss for the duration it is consolidated. This probability is normally distributed.
LTM-LLM Translation (F): This is the probability that a LTM component is transcribed to LLM at a given time point. This probability is normally

distributed by component. For the simulation, it is recommended that F be less than f because, intuitively, it seems reasonable to assume that the aim

J.S. Fisher and G.A. Radvansky Journal of Memory and Language 108 (2019) 104035

26



of the consolidation of information in LTM is to provide it time to be transcribed to LLM.
LTM Loss (λ): This is the probability that a LTM component will be lost at a given time point. This probability is normally distributed by component.
LLM Loss (Ʌ): This is the probability that a LLM component will be lost at a given time point. This probability is normally distributed by component.
Consolidation Duration (u): This is the average duration of the consolidation of a trace in LTM. That is, how long until it becomes unconsolidated.
Retrieval Threshold (ϴ): This is the proportion of components needed for a trace to be retrievable (whether by reconstruction or pattern

matching). This is determined by the ϴ parameter multiplied by the total number of environmental components (C). Any retained component in LTM
or LLM contributes to the retrieval of the trace (note that the same component retained in both LTM and LLM only counts once).

Inferences Are Useful: If inferences are useful at retrieval, they will contribute to the retrievability of a trace (i.e., the trace having enough
components to cross the threshold set by ϴ). If they are not useful only the environmental components will contribute to retrieval.

Description

An outline of the simulation is provided in Fig. A1. In all cases, a random number would be between 0 and 1. The simulation begins with

Fig. A1. A depiction of the processes operating in the memory retention simulation. Note that each instance of R is a separate random number, not the same random
number applied multiple times.
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encoding, in which information may be stored in long term memory (LTM) as a retained trace. This trace is composed of environmental components
(C) and potential inference components drawn from prior knowledge (c). The original encoding is determined by the probability parameter, l, such
that Pr((l ± el) > Rl), where Rl is a random number. The probability of an inference component being drawn is determined by the probability
parameter, p, such Pr((p ± ep) > Rp), where Rp is a random number.

As retention begins, the processes of consolidation, transcription, LTM forgetting, and LLM forgetting occur iteratively at each time point.
Consolidation for each trace is governed by the probability parameter f, such that Pr((f ± ef) > Rf), where Rf is a random number. Once con-
solidated, any components in the memory will not be subject to loss in LTM. Transcription is the process by which retained components of LTM traces
can be copied to LLM. This is governed by the F parameter, such that Pr((F ± eF) > RF), where RF is a random number. LTM loss refers to the
forgetting of components within a LTM trace, and is exponential over time. This is governed by the λ parameter, such that Pr((λ ± eλ) > Rλ), where
Rλ is a random number. Similarly, LLM loss refers to the forgetting of components within an LLM trace, and is exponential over time. This loss is
governed by the Ʌ parameter, such that Pr((Ʌ±eɅ) > RɅ), where RɅ is a random number. For both LTM and LLM, a component that is lost remains
inaccessible from that memory store for all subsequent time points. While memories in LTM may be consolidated, this consolidation is only tem-
porary. Once a time point has passed, then the memory becomes unconsolidated, and is again open to loss. This unconsolidation is governed by the u
parameter ± eu.

A trace is retrievable at any time if a sufficient number of its components are accessible. This level is determined by the Θ parameter (the ϴ
parameter multiplied by X, the maximum number of environmental components for each item trace). For example, if a trace had 10 environmental
components and retrieval involved a ϴ value of .7, the Θ threshold would require 7+ accessible components for the trace to be retrieved with the
idea that partial matching or reconstruction of some nature would allow for an accurate response. These components could be either environmental
or inference components,9 and they could come from memories in either the LTM store or the LLM store. Importantly, for the simulation, if a
particular component is accessible in both LTM and LLM, it is only counted once toward the threshold. Therefore, only a sufficient number of unique
components for a trace will contribute to its retrieval.
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