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The traditional view of forgetting over time is that it is best 
fit by a negatively accelerating function, such as a loga-
rithmic (e.g., Ebbinghaus, 1885/1913), power (e.g., Wixted 
& Ebbesen, 1991), or some other function (e.g., Rubin & 
Wenzel, 1996). However, recent work has shown that 
under some conditions forgetting is better fit by a linear 
function (Fisher & Radvansky, 2019). Given the serious 
implications that this has for theories of retention and for-
getting, it is important to better understand the factors that 
lead to this. The aim of the current study is to explore one 
theoretically identified factor that may increase the proba-
bility of producing linear forgetting, namely, the degree of 
learning when this leads to a sufficient number of memory 
trace components.

Linear forgetting

Here, we explore memory retention and forgetting issues 
initially begun by Ebbinghaus (1885/1913). In the reten-
tion and forgetting literature, there is a common consensus 
that episodic retention follows a negatively accelerating 
pattern, such as a power function (m = a∙t –b; e.g., Wixted & 
Ebbesen, 1991, 1997). Given the broad acceptance of this 
idea of a negatively accelerating pattern of memory loss, 
we refer to it here as the default view.

Although a large-scale analysis by Rubin and Wenzel 
(1996) failed to identify a single, universal function, sev-
eral researchers have argued that one of the best fitting 
functions is a power function (Anderson & Schooler, 1991; 
Averell & Heathcote, 2011; Wixted & Ebbesen, 1991). 
This is based on both fitting functions to newly collected 
data (Wixted & Ebbesen) and to Ebbinghaus’s (1885/1913) 
original data (Anderson & Schooler; Wixted & Ebbesen). 
Averell and Heathcote argued for a power function using a 
hierarchical Bayesian analysis of retention data. Although 
a power function may emerge artefactually from averaging 
other sorts of functions, such as exponentials (Anderson, 
2001; Anderson & Tweney, 1997), it does a good job at 
capturing many negatively accelerating retention patterns 
across a range of material and test types.

However, despite all that, Fisher and Radvansky 
(2019) showed that a linear function (m = a–b∙t) is reliably 
observed under some conditions and over long retention 
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spans. The difference between negatively accelerating 
and linear patterns of forgetting has important implica-
tions for how we predict and model retention and forget-
ting. For example, as shown in Figure 1, a power function 
reflects a constant rate of forgetting across log time, 
whereas, a linear function reflects an increasing rate. 
Given other models of decay in science (e.g., radioactive 
decay), it is readily easy to understand how memory could 
lose a constant proportion of information over time. It is 
harder to understand how it could lose a constant amount 
(increasing proportion) over time.

Prevalence of linear forgetting

Linear forgetting is not an anomaly of a single study. Fisher 
and Radvansky (2019) also noted patterns of linear forget-
ting in ten other studies (16 data sets) with 3–52 retention 
intervals each (Bahrick et al., 1975; Burtt & Dobell, 1925; 
Cepeda et al., 2008, 2009; Jeunehomme et al., 2018; Kristo 
et al., 2009; Meeter et al., 2005; Nunoi & Yoshikawa, 2016; 
Runquist, 1983; Wagenaar, 1986). An outline of these stud-
ies is provided by Fisher and Radvansky.

What is notable is that linear forgetting is observed 
across a range of material and memory test types. In terms 
of material types, linear forgetting is seen with paired asso-
ciates (Burtt & Dobell, 1925; Cepeda et al., 2009; Runquist, 
1983), classmates names (Bahrick et  al., 1975), 

object–location associations (Nunoi & Yoshikawa, 2016), 
sentences (Fisher & Radvansky, 2019), autobiographical 
memory (Kristo et al., 2009; Wagenaar, 1986), news sto-
ries (Meeter et al., 2005), trivia facts (Cepeda et al., 2008, 
2009), and a walk around town (Jeunehomme et al., 2018). 
In terms of test types, it is seen with recall (Bahrick et al., 
1975; Burtt & Dobell, 1925; Cepeda et  al., 2008, 2009; 
Jeunehomme et  al., 2018; Kristo et  al., 2009; Runquist, 
1983; Wagenaar, 1986), recognition (Fisher & Radvansky, 
2019; Meeter et al., 2005; Nunoi & Yoshikawa, 2016), and 
matching tests (Bahrick et al., 1975).

Note that linear forgetting is also found in other stud-
ies not discussed by Fisher and Radvansky (2019), 
including Linton (1982), and Staats et al. (1970). This is 
a pervasive phenomenon that requires a cogent explana-
tion given its contrast to the default understanding. In 
addition, linear forgetting is not simply an artefact of 
taking a narrow segment of a curvilinear function 
because it has been observed over very long periods of 
time, such as month or years (e.g., Fisher and Radvansky, 
2019; Linton, 1982).

A theory of linear forgetting

What brings about linear forgetting? Fisher and Radvansky 
(2019) developed an account, that we call the retrieval 
accuracy from fragmented traces (RAFT) model.1 This 

Figure 1.  A power function is shown at the top. As each time point doubles, the total proportion lost remains constant at 24%. 
The left figure is with standard axes and the right is with logarithmic axes. A linear function is shown at the bottom. As each time 
point doubles, the total proportion lost increases. The left figure is with standard axes and the right is with logarithmic axes.
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account combines the premise of negatively accelerating 
loss of information (Wickens, 1998) with the use of par-
tially degraded information in retrieval judgements. The 
RAFT model can be specified under the premise that mem-
ory trace degrade and information is lost according to a 
negatively accelerating (e.g., power or exponential) func-
tion. RAFT operates according to several widely accepted 
ideas of memory processing2:

1.	 Memory traces are composed of multiple 
components.
a.	 Memory trace components are forgotten in a 

negatively accelerating manner.
b.	 Different components within a trace may be 

lost at different rates.
2.	 People may be able to provide an accurate memory 

test response using partial traces.
a.	 Accurate responses may be made using recon-

struction.
b.	 Accurate responses may be made using partial 

matches (e.g., with recognition).
3.	 It is the combination of these influences that lead to 

patterns of linear forgetting.
a.	 This more likely to be observed when there are 

more memory trace components.

For RAFT, memory traces are made up of a series of 
components. These can come from either the features of 
materials from the world or inferences generated using 
world knowledge. Thus, traces vary in the number of 
components they have. This may be influenced by sev-
eral factors, including the complexity of the information 
itself and the number of inferences drawn at the time of 
encoding.

Over time, these trace components are forgotten 
(i.e., they become either inaccessible or unavailable) at 
a probability that is captured by a negatively accelerat-
ing loss function.3 Thus, our theory preserves the default 
Ebbinghaus-based view, albeit at the trace component 
level, rather than at the entire memory trace level.

At retrieval, memory judgements do not necessarily 
require complete and intact memory traces. Instead, suc-
cessful judgements can be made if an adequate proportion 
of the components are retained. Under such circumstances, 
people could respond accurately on a recognition memory 
test using a partial matching process (e.g., Norman & 
O’Reilly, 2003). Alternatively, through a process of mem-
ory reconstruction, prior world knowledge, such as sche-
mas, could be used to fill in the gaps in degraded traces 
(e.g., Bartlett, 1932). The precise mechanism for retrieval 
has been left unspecified, and it is likely that in practice 
some components are more diagnostic for a given memory 
task than others. Nonetheless, the underlying idea that only 
part of a memory trace is needed at the time of retrieval is 
consistent with the well-established processes of partial 
matching and reconstruction. See Figure 2 for an illustra-
tion of this process.

This theoretical framework was implemented in a sim-
ulation of the RAFT theory to capture the forgetting pat-
terns reported by Fisher and Radvansky (2018, 2019). For 
RAFT, even if memory trace components are lost follow-
ing a negatively accelerating function, so long as, there 
are a sufficient proportion of the components of a trace 
available, a correct response may be made. Figure 3 pro-
vides the simulation of Fisher and Radvansky (2019) in 
Experiment 2 assuming that component loss follows a 
power function. This simulation attempts to simulate the 
pattern of forgetting observed over a retention interval of 

Figure 2.  Illustration of how RAFT operates. On the left are seven memory traces that are represented as a vector of 
components. As each time step increases, these components are forgotten probabilistically (represented by the grey star), such that 
the proportion loss of all components follows a negatively accelerating pattern. Retrieval is successful at a given retention period if 
a sufficient number of components are still remembered. For instance, if a trace requires six components for a successful retrieval 
judgement to be made, six of the seven traces would be accessible for Retention Period 1 and three of the seven traces would be 
accessible for Retention Period 2.
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84 time steps. Note that linear forgetting is only observed 
when there are enough trace components for reconstruc-
tion and/or partial matching processes. When the number 
of trace components drops below a certain level, the 
underlying pattern of loss (e.g., exponential or power) for 
the components should emerge in the behavioural data. 
This is also shown in Figure 3. The parameters of this 
simulation are provided as an online supplement on the 
Open Science Framework (OSF).

As mentioned earlier, our focus here is on the levels of 
learning. Specifically, the RAFT model predicts that higher 
levels of learning can produce linear forgetting if the addi-
tional learning leads to enough trace components being 
present to allow for reconstruction and/or partial matching. 
Higher levels of learning can be achieved in several ways. 
In some cases, the materials were learned through repeated 
presentations (Burtt & Dobell, 1925; Nunoi & Yoshikawa, 
2016; Runquist, 1983) and/or practice testing (Cepeda 
et  al., 2008, 2009; Fisher & Radvansky, 2019; Nunoi & 
Yoshikawa, 2016; Runquist, 1983).

The question of whether retention patterns differ as a 
function of the level of learning has been explored pre-
viously (Bogartz, 1990a, 1990b; Loftus, 1985a, 1985b; 
Loftus & Bamber, 1990; Slamecka, 1985; Slamecka & 
McElree, 1983). However, this discussion was largely ori-
ented around interpretations of Slamecka and McElree’s 
study that assessed whether the degree of original learn-
ing influenced the speed of forgetting over an interval 
of 5 days. The shape of the forgetting function was not 
considered.

It is important to note that higher levels of learning 
alone will not result in linear forgetting. As a classic exam-
ple of this, Ebbinghaus (1885/1913) learned lists of non-
sense syllables to a high degree using rote repetition, and 
linear forgetting is clearly not observed in his retention 
data. For RAFT, there needs to be a sufficient number of 
trace components to allow for reconstruction and/or partial 
matching. Lists of nonsense syllables, as well as other 

impoverished material sets, are less likely to lead to this 
state of affairs even after substantial learning of the type 
Ebbinghaus did. What does seem to encourage the creation 
of traces that have a sufficient number of components is 
when the materials are inherently elaborate or interrelated 
with one another (as with a narrative) or when simpler 
materials (such as sentences) are used, and there is an 
opportunity to elaborate upon that information during 
learning. Here, we examine the role of degree of learning 
on the shape of the pattern of forgetting in three experi-
ments that examine retention for periods of up to 2 weeks. 
We predict that as learning increases, then the shape of the 
pattern can change.

Experiment 1

For Experiment 1, people learned lists of sentences like 
those used by Fisher and Radvansky (2019). The aim 
was to examine the influence of the degree of learning 
on the observation of linear forgetting. According to the 
RAFT theory, higher degrees of learning should allow 
for more opportunities for the materials to be encoded 
and/or elaborated upon. This contributes to the observa-
tion of linear retention patterns because of the better 
encoding of trace features, and a greater probability of 
inference making. The prediction is that as the level of 
learning increased, there would be a concomitant 
increase in the linearity of the pattern of retention and 
forgetting.

Method

Participants.  Four hundred thirty-two native English-
speaking participants (281 females), ranging from 18 to 
76 years of age (M = 38.2; SE = .58), were recruited through 
Amazon Mechanical Turk (AMT) in exchange for Amazon 
credit. Twenty-four participants were randomly assigned 
to each retention/learning degree group. Three hundred 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

Re
te

n�
on

Delay Days

RAFT Simula�on RAFT Simula�on (low learning)

Figure 3.  Simulation of Fisher and Radvansky (2019) Experiment 2. The accuracy data are in the left plot where .5 is chance 
performance. The power fit of these data using R2 was .42 and the linear fit was .98. The RAFT simulation of these data is on the 
right (dashed line) where a power fit is .72 and a linear fit is .89. The simulation under low learning (dotted line) where a power fit 
is .74 and a linear fit is .64. Note that the retention value of 0 in the simulation is equivalent to the chance recognition score of .5.



Fisher and Radvansky	 1487

forty-five participants were replaced for failing to return for 
the second half (memory testing). Experiment 1 was a 3 
(learning) × 6 (delay) design. For each group, learning 
level was either study (S), study–test (ST), or study–test–
study–test (STST). Similarly, retention interval was imme-
diate, 1, 3, 7, 10, and 14 days. Participants in the immediate 
groups were reimbursed US$.60, whereas participants in 
all other groups were reimbursed US$.40 for learning sec-
tion and another US$.40 for testing. This and all other 
experiments had Institutional Review Board (IRB) approval 
from the University of Notre Dame.

Materials.  There were 18 study sentences, which were cre-
ated from random pairings of 18 people and 18 activities/
traits. Specifically, nine of the sentences were combina-
tions of people and activities of the form “The person is 
activity” (e.g., “The student is eating.”), and nine of the 
sentences were combinations of people and traits of the 
form “The person is trait” (e.g., “The clerk is skillful”). 
Each participant had their own randomised pairings. In 
addition, to broaden the set of materials, we used two sets 
(A and B) of the 18 activities/traits that were synonymous 
with one another. Half of the participants in each group 
were randomly assigned to Set A and half to Set B. These 
are provided at the OSF website (https://osf.io/7mr64).

In addition to the 18 study sentences, there were 18 
nonstudied recognition foils made up of recombination of 
these pairings. This was done so that participants could not 
use familiarity judgements based on the words in the sen-
tences, but needed to evaluate the particular combination 
of elements to make an appropriate response.

Procedure.  Both Experiments 1 and 2 were coded in JavaS-
cript using the jsPsych library (De Leeuw, 2015). After 
providing informed consent, learning took place online. 
Learning for the S group consisted of one presentation of 
the list of sentences. These sentences were presented one 
at a time for 7 s each. For the ST group, they studied the 
sentences like the S group, and were then given a 36-item 
cued recall test with feedback, as is done in other sentence 
memory studies (e.g., Fisher & Radvansky, 2019). Cued 
recall consisted of sentence blanks of the form “The 
______ is eating” or “The student is ______.” Participants 
were asked to fill in the correct word and received feed-
back for incorrect responses. The feedback was in the 
form, “Sorry, [provided answer] is incorrect. The correct 
answer is [correct answer].” In this way, memory for each 
person and activity/trait was assessed. These questions 
were presented randomly, one at a time, in a self-paced 
manner. Finally, the STST group went through the same 
process as the ST group, except that this procedure was 
done twice. Note that for the STST group, a different ran-
dom order was used on each ST cycle.

After learning, the immediate group completed a sen-
tence sensibility task. This consisted of 20 sentences, ten 

of which were sensible and ten of which were not. This 
served as a distractor task. The immediate group followed 
the sensibility task with the recognition test. The delay 
groups were contacted by email after the designated reten-
tion interval. For the 1-day group, the email was sent 2 hr 
prior to testing time. For the 3-day group, it was sent 5 hr 
prior to the testing time. All other delay groups received 
the email the morning of the testing day.

For the recognition test, participants responded to 36 
probe sentences (18 studied and 18 nonstudied). Probes 
were presented one at a time with the task of indicating 
whether each sentence was studied or not by clicking a 
button on the screen. No feedback was provided.

Results and discussion

The deviations from the assigned participant retention 
intervals are provided at the OSF website (https://osf.
io/7mr64). Recognition accuracy (proportion of hits and 
correct rejections) is shown in Figure 4.4 These data were 
fit to power and linear functions, which are provided in 
Table 1.5 As can be seen, the S condition was better fit by 
a power function, whereas the ST and STST conditions 
were better fit by linear functions. Moreover, the linear fit 
was greater for the STST than the ST condition. These 
results support our prediction that as the level of learning 
increased, there would be a concomitant increase in linear 
forgetting. This is consistent with our theory that increases 
in the degree of learning would make it more likely that 
trace elements will be encoded, and perhaps elaborated 
upon.

The results of Experiment 1 are in line with other results 
reported in the literature. The value of degree of original 
learning on the observation of linear forgetting is hinted at 
in a study by Craig et  al. (1972; see also Hellyer, 1962; 
Postman & Riley, 1959; Youtz, 1941). This study used 
printed advertisement slides with brand names as materials 
and manipulated learning to involve either 7 (100% over-
learning), 14 (200% overlearning), or 21 exposures (300% 
overlearning). They tested free recall of the brand names 
either immediately, 1 day, 1 week, or 4 weeks later. As the 
number of repetitions increase, the fit of a power function 
declined (R2 = .84, .73, and .64) and the fit of the linear 
function increased (R2 = .63, .70, and .86). This was not 
noted by Craig et al.

However, it is important to note that there was retrieval 
practice during memorisation in Experiment 1. This may be 
linked to the observation of linear forgetting here. For 
example, consider a study by Runquist (1983). In this study, 
people were tested for memory for word pairs. These were 
presented one or three times, and there was retrieval prac-
tice during memorisation or not. The results revealed that 
memory was better with three presentations compared with 
one, and better with retrieval practice. Of interest, here is 
how well the various conditions were fit by power and 

https://osf.io/7mr64
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linear functions. This is shown in Table 2. As can be seen, 
linear forgetting was observed with a higher level of learn-
ing, but only when there was retrieval practice.

Experiment 2

The aim of Experiment 2 was to assess whether the results 
of Experiment 1 were due to repeated study alone, or to 
repeated study along with retrieval practice. Experiment 2 
replicated much of Experiment 1 except that the different 
levels of learning were defined in terms of the number of 
study cycles alone. No cued recall testing was done dur-
ing memorisation. If the results of Experiment 1 are due to 
the number of exposures, then the pattern of results for 
Experiment 2 should resemble those of Experiment 1. 
However, if the results are brought about by the additional 

elaboration and processing brought on by testing, then lin-
ear forgetting should not be observed.

Method

Participants.  For Experiment 2, 432 native English-speak-
ing participants (225 females), ranging from 18 to 81 years 
of age (M = 37.4; SE = .55), were recruited through AMT 
in exchange for Amazon credit like Experiment 1. Each 
was randomly assigned to a group of 24 participants 
assigned to each retention/learning degree group. Experi-
ment 2 was a 3 (learning) × 6 (delay) design. Four hun-
dred sixty-four participants were replaced for failing to 
return for the second half (memory testing). For each 
group, learning level was either study (S), study–study 
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Figure 4.  Recognition accuracy for Experiment 1 with linear axes above and logarithmic axes below.

Table 1.  Fit of the Experiment 1 data to power and linear 
functions fits in terms of R2.

Group Power function fit Linear function fit

S .95 .63
ST .71 .87
STST .70 .96

Table 2.  Fit of the Runquist’s (1983) data to power and linear 
functions fits in terms of R2.

Group Power function fit Linear function fit

S .85 .40
ST .68 .65
SSS .93 .63
STSTST .70 .93



Fisher and Radvansky	 1489

(SS), or study–study–study (SSS). The same retention 
intervals were used as in Experiment 1.

Materials and procedure.  The same materials and proce-
dure were used as in Experiment 1, with the exception that 
there was no cued recall testing during learning for any of 
the groups. After the 18 sentences are presented, partici-
pants in the SS and SSS groups were told to memorise the 
sentences once or twice more. The order of sentences was 
randomised for each study cycle.

Results and discussion

The deviations from the assigned participant retention 
intervals (in terms of minutes) are provided at the OSF 
website (https://osf.io/7mr64). The accuracy data are 
shown in Figure 5. These data were better fit by a power 
function in all conditions. These results do not replicate 
Experiment 1. Thus, the results of Experiment 2 suggest 
that learning by study alone is insufficient to produce lin-
ear forgetting, at least insofar as the repetitions are two or 
fewer. All conditions were better fit by power functions 
with similar slope parameters. Moreover, this is consistent 
with prior work, such as that by Slamecka and McElree 
(1983). Interpreted under the RAFT framework, mere rep-
etition of presentation alone did not result in a sufficient 
number of encoded trace components, such that partial 
matching and reconstruction would result in linear forget-
ting. This may be due to lack of inferences being generated 

during the repeated presentations. After all, it is well-
known that rote repetition alone may be insufficient to lead 
to more complex memory traces (e.g., Glenberg et  al., 
1977; Nickerson & Adams, 1979).

Experiments 1 and 2 comparison

The comparison of Experiments 1 and 2 parallels the idea 
that retrieval practice during memorisation is important for 
observing linear forgetting with these types of materials. 
This is consistent with other data in the literature, such as 
the study by Runquist (1983). Thus, there is some benefit 
to directly comparing conditions that do and do not involve 
retrieval practice during memorisation.

To do this, we combined the accuracy data from 
Experiments 1 and 2 into a 2 (experiment) × 3 (degree of 
l) × 6 (delay) analysis of variance (ANOVA). This analy-
sis revealed main effects of experiment, F(1, 848) = 74.50, 
MSE = 1.43, p < .001, ηp

2
 = .08; degree of learning, 

F(2, 848) = 89.46, MSE = 1.71, p < .001, ηp
2  = .17; and 

delay, F(5, 848) = 53.15, MSE = 1.02, p < .001, ηp
2  = .24, 

along with a significant experiment × degree of learn-
ing interaction, F(2, 848) = 28.64, MSE = .55, p < .001, 
ηp
2

 = .06. No other interactions were significant. Simple 
effects tests at each degree of learning showed no differ-
ence between the S groups for Experiment 1 (M = .64; 
SE = .01) and Experiment 2 (M = .64; SE = .01), as 
expected, F(1, 276) = .64, MSE = .02, p = .43, ηp

2  = .002. 
However, there was a significant difference between the 
ST (M = .77; SE = .01) versus SS (M = .67; SE = .01) 
groups, F(1, 276) = 35.35, MSE = .02, p < .001, ηp

2  = .11, 
as well as between the STST (M = .88; SE = .01) versus 
SSS (M = .72; SE = .01) groups, F(1, 276) = 93.64, 
MSE = .02, p < .001, ηp

2  = .25.
This finding is consistent with a testing effect (Bjork, 

1975; Roediger & Karpicke, 2006), although Experiments 
1 and 2 were not designed to target the testing effect per se. 
Overall, the comparison of these two experiments suggests 
that retrieval practice influences the shape of the retention 
function. In addition, the better performance of the groups 
that involved practice testing compared with those that 
only involved study sessions mirrors the results of 
Roediger and Smith (2012) who found that testing resulted 
in better learning compared with study alone.

Thinking about the testing effect more specifically, we 
can look at Roediger and Karpicke’s (2006) highly cited 
study. Of particular importance here, in their Experiment 
1, they assessed memory at three retention intervals, and 
reported an interaction between learning task and delay. 
These data are shown in Figure 6. If we fit these data to 
power and linear functions, we find that the SS condition 
was better fit by a power function (R2 = .95) than a linear 
function (R2 = .80); however, the ST condition was more 
poorly fit by power function fit (R2 = .72) than a linear 
function (R2 = .99). This is in line with our findings that 
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greater learning is more likely to lead to linear forgetting 
(Table 3).

Experiment 3

Why would retrieval practice lead to more linear forget-
ting? For the RAFT model, an important aspect of the 
observation of linear forgetting is whether the traces have 
a large enough number of trace components to allow for 
partial matching and/or reconstruction. How would 
retrieval practice during memorisation affect this? Some 
retrieval practice theories suggest how this might happen. 
For example, according to the elaborative retrieval 
hypothesis (Carpenter, 2009), there is a spreading activa-
tion process that results in elaborative associations during 
retrieval practice. This elaboration could be interpreted as 
resulting in making inferences, and, as a result, from our 
view, would increase the number of trace components. 
Alternatively, according to the gist-trace processing 
account (Bouwmeester & Verkoeijen, 2011), retrieval 
practice enhances the strength of a memory by bringing to 
bear schematic information. People use schematic knowl-
edge to elaborate on a memory, again, according to our 
view, increasing the number of trace components. Finally, 
for the dual memory framework (Rickard & Pan, 2018), 
retrieval practice results in the creation of two memory 
traces, one each for the learning and retrieval experiences. 
The result would be multiple traces containing the target 
information, both of which contribute to retrieval. 

Although our simulation does not involve multiple traces, 
per se, with multiple traces, each with different features, 
then the outcome would be the same as having a single 
trace with multiple features.

Overall, while our work does not distinguish between 
these theories, they are all consistent with the idea that 
retrieval practice can result in the creation of memory 
traces with more components, which would increase the 
likelihood of observing linear forgetting. Experiment 3 
was a study that we had done years before, but had not yet 
done anything with the data, that had involved an explicit 
assessment of the testing effect with the aim of assessing 
whether linear forgetting is observed more under retrieval 
practice than under repeated study conditions. It was mod-
elled after a study by Roediger and Karpicke (2006) and 
used the longer texts of Chan et al. (2006). Experiment 3 
also examined the testing effect across four retention inter-
vals of up to 4 weeks later.

Method

Participants.  Ninety-five students were recruited from the 
University of Notre Dame participant pool in exchange for 
partial course credit. They were assigned to one of four 
retention groups (immediate, 1 day, 1 week, and 4 weeks), 
each made up of 24 participants, except for the 1-day con-
dition in which there were only 23 participants.

Materials and procedure.  The materials used in this study 
were the same as those used by Chan et al. (2006). They 
consisted of two texts printed on paper. The topics were 
the big bang theory and the Shaolin temple, which were 
1948 and 1890 words long, respectively. Learning con-
sisted of initial reading followed by either a restudy or a 
test phase. Within each text, there were 24 critical sen-
tences identified by Chan et  al. (2006). These sentences 
were either restudied or tested for after the initial reading 
phase.

For the initial reading period, people were given 15 min 
to read each of the two texts. They were told that to con-
tinue reading until the 15 min were up if they finished 
early. The order of the texts was counterbalanced.

For the second phase, people again studied parts of one 
of the texts (SS condition) and were given a test for parts 
of the other (ST condition). Following Roediger and 
Karpicke (2006), for the SS text, people were given the 24 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 1 2 3 4 5 6 7 8

Ac
cu
ra
cy

Days

SS ST

0.1

1

0.001 0.01 0.1 1 10

Ac
cu
ra
cy

Days

SS ST

Figure 6.  Data from Roediger and Karpicke (2006).

Table 3.  Fit of the Experiment 2 data to power and linear 
functions in terms of R2.

Group Power function fit Linear function fit

S .91 .53
SS .85 .86
SSS .82 .71
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critical sentences from the text to restudy, one at a time. In 
comparison, for the ST text, people were given the critical 
sentences from the text with a target answer left blank. For 
example, “After the Big Bang, gravity condensed clumps 
of matter together and these clumps eventually formed 
____________.” The task was to type the answer to the 
blank. No feedback was provided.

After the second phase, a final cued recall test was 
given. For this test, people were given 24 fill-in-the-blank 
questions for each text (48 total). These items were of the 
same format as the ST probes that were given during the 
second phase of additional learning. There was no time 
limit. The order of texts was randomised for each person, 
as was the order of the items within each one.

For the immediate group, they were given the test 
instructions right after the end of the second phase, and 
then took the final memory test on the lab computers. In 
comparison, participants in the other retention groups were 
told to expect an email with a weblink. They then took the 
final memory test on their own devices.

Results

Responses were scored as correct if they clearly conveyed 
the propositional idea in the text. For example, if the text 
was “According to the flat and open models, the universe 
will continue to _________.,” and the answer was “expand 
indefinitely,” a response of “expand for eternity” was 
scored as correct. In addition, some answers were given 
half credit if they captured an element of the propositional 
idea. For example, the answer of “expand” was counted as 
half correct.

The recall accuracy data are shown in Figure 7. As can 
be seen, while memory was initially better in the Study-
Study conditions, the rate of forgetting was slower for the 
ST condition and was superior to it by 7 days. This is con-
sistent with Roediger and Karpicke’s (2006) basic 
finding.

These data were submitted to a 4 (retention interval) × 2 
(condition: test vs study) mixed ANOVA, with retention 
interval as a between-participants variable and condition 
within. This analysis revealed main effects of retention 
interval, F(3, 91) = 28.26, MSE = .047, p < .001, ηp

2  = .48, 
with memory becoming worse over longer retention inter-
vals, and condition, F(1, 91) = 4.91, MSE = .01, p = .03, 
ηp
2  = .05, with performance being better, overall in the SS 

condition. Importantly, the interaction was significant, 
F(3, 91) = 13.96, MSE = .01, p < .001, ηp

2  = .32. Simple 
effects tests revealed that the effect of condition was signifi-
cant for the immediate group, F(1, 23) = 33.15, MSE = .01, 
p < .001, ηp

2  = .59, and the 1-day group, F(1, 22) = 9.73, 
MSE = .008, p = .005, ηp

2  = .31, with the SS condition doing 
better than the ST condition. The difference was not sig-
nificant for the 7-day group, F(1, 23) = 2.54, MSE = .013, 
p = .13, ηp

2  = .10, but was significant for the 28-day group, 
F(1, 23) = 4.44, MSE = .011, p = .046, ηp

2  = .16. Note that 

the testing effect is relatively small here. This is consistent 
with other research showing that the testing effect may be 
reduced or absent for more complex materials (van Gog & 
Sweller, 2015; but see Karpicke & Aue, 2015).

While replicating the basic testing effect is nice, our 
primary concern here is the best fitting function for the SS 
and ST conditions. As can be seen in Table 4, these data are 
in line with all the other studies. When there was less 
learning (SS), the data were better fit by a power function 
than a linear function, but with greater learning (ST), the 
data were better fit by a linear function than a power func-
tion. This further supports our theory.

General discussion

The aim of the current study was to explore whether differ-
ences in the degree of learning influences the observation 
of linear forgetting. Our results clearly show that it can. 
However, at least for the kinds of materials that we used, 
this additional learning seems to require something more 
than simply repeated exposure. In our case, additional 
retrieval practice was sufficient to allow linear forgetting 
to be observed. This is consistent with other data sets that 
have been reported in the literature, but which have not 
been evaluated in this way.

The RAFT simulations for Experiments 1, 2, and 3 are 
provided in Figures 8 to 10, respectively. All the parame-
ters are constant in these simulations, except for 
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Figure 7.  Recognition accuracy for Experiment 3 with linear axes 
above and logarithmic axes below.
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the theoretically defined trace learning and inference 

parameters. A full listing of the parameter values is pro-
vided at the OSF website (https://osf.io/7mr64).

From the perspective of the RAFT theory, the reason that 
increased degrees of learning can sometimes produce linear 
forgetting patterns is because of an increase in the number of 
trace components present. This increase under the conditions 
explored here are consistent with some theories of retrieval 

practice and testing effects (Bouwmeester & Verkoeijen, 
2011; Carpenter, 2009; Rickard & Pan, 2018). Essentially, the 
act of testing during learning results in the generation of more 
inferences, which then become part of the memory for the 
content information. This said, it is important to note that 
there are likely also other ways of increasing trace compo-
nents besides retrieval practice. For example, Doolen and 
Radvansky (2021) examined memory retention for novels 
and found that retention followed a linear pattern for elements 
that had a high causal connectivity. In this case, number of 
repetitions was kept the same. What varied was how much 
information was in a memory trace for a given story event.

Consistent with this, in our Experiment 1, linear forget-
ting was observed after people learned a list of sentences, but 
only when there was cued recall testing during the memori-
sation phase. Moreover, two cycles through this process 
magnified this pattern. In comparison, for Experiment 2, 
which was essentially the same as Experiment 1, except 
that there was no cued recall testing during learning, there 
was no evidence of a pattern of linear forgetting. That is, res-
tudy alone was not sufficient to induce enough trace compo-
nents. Repetition alone may not encourage inference 
generation (at least to the extent testing would).

The comparison of these two experiments is analo-
gous to studies of the testing effect. Experiment 3 allowed 
us to directly assess the issue of whether a testing effect 
paradigm is more likely to produce linear forgetting. 
Experiment 3 showed evidence of linear forgetting in the 
testing condition, even though this study was not initially 
designed to address such questions. Moreover, this study 
used more complex texts, rather than just a list of sen-
tences to learn. This provides more support for the RAFT 
theory suggestion that higher levels of learning are more 
likely to lead to the observation of linear forgetting.

Note that the observation of linear forgetting is not likely 
due to an influence of a ceiling effect given that linear for-
getting is also observed in the Roediger and Karpicke (2006) 
data, as well as our Experiment 3 (see also Cepeda et al., 

Table 4.  Fit of the Experiment 3 data to power and linear 
functions in terms of R2.

Group Power function fit Linear function fit

SS .85 .73
ST .80 .87
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Figure 8.  RAFT simulation of Experiment 1.
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2009; Linton, 1982), when initially performance in the test 
condition is actually less than in the study condition.

Prior studies

These conclusions are supported not only by our own stud-
ies, but also re-evaluations of prior research. As noted ear-
lier, Fisher and Radvansky (2019) reported that the 
observation of linear forgetting is also present in several 
other studies (Bahrick et al., 1975; Burtt & Dobell, 1925; 
Cepeda et al., 2009, 2008; Jeunehomme et al., 2018; Kristo 
et al., 2009; Linton, 1982; Meeter et al., 2005; Nunoi & 
Yoshikawa, 2016; Runquist, 1983; Staats et  al., 1970; 
Wagenaar, 1986). This occurs even though it was often not 
noted by the researchers themselves and was not the aim of 
those studies. This observation is made even in the face of 
a wide variety of materials and memory test types. Thus, 
this is a robust phenomenon.

The idea that different levels of practice influence the 
likelihood of observing linear forgetting is also supported 
by other work in the literature. For example, if we re-ana-
lyse the data reported by Craig et al. (1972), we see that 
increased levels of learning are accompanied by more of a 
linear forgetting function. This may have occurred for two 
reasons. First, the number of repetitions was quite large 
(21). Thus, there was more opportunity for people to spon-
taneously elaborate on the material that was seen repeat-
edly. Second, the materials were pictures and product 
names. The act of understanding why a name went with a 
certain product is a form of elaborative rehearsal, which 
would increase the number of trace components. The idea 
that mental processing beyond simple study increases the 
probability of observing linear forgetting is support by a 
reassessment of work by Runquist (1983) and Roediger 
and Karpicke (2006). Consistent with theories of the test-
ing effect, this seems to be related to increased elaborative 
processing that accompanies retrieval practice.

Implications for retrieval practice studies

Although not the focus of our work, the experiments 
reported here have implications for theories of retrieval 
practice. As already noted, these data support the idea that 
retrieval practice involves, in some form or another, the 
storage of a larger amount of information in memory, 
either in the form of elaborative inferences, multiple mem-
ory traces (Bouwmeester & Verkoeijen, 2011; Carpenter, 
2009; Rickard & Pan, 2018). Of the studies showing a lin-
ear retention pattern mentioned previously, Cepeda et al., 
Chan, and Runquist all used explicit practice retrieval dur-
ing learning.

One of the features of the testing effect is the acknowl-
edgement that testing during learning does not always 
provide a benefit immediately and may even show the 
opposite pattern at that time particularly when testing 

performance is poor and no feedback is given (Kang et al., 
2007). The testing effect is a phenomenon that is more 
likely to be observed after a delay (e.g., Roediger & 
Karpicke, 2006). Thus, there is some acknowledgement 
among researchers exploring the testing effect that 
something is changing over time. What is absent is any 
consideration of how the fact that the pattern becomes 
more linear informs the mechanisms involved in produc-
ing the effect.

Consistent with views, such as the elaborative retrieval 
hypothesis, it has also been noted that testing increases the 
degree of organisation of the information in memory 
(Zaromb & Roediger, 2010). Our results suggest that this 
increased organisation could involve the creation of addi-
tional trace components, perhaps in the form of inferences. 
It has also been found that testing reduces proactive inter-
ference effects (Szpunar et al., 2008). Taking the idea that 
greater trace overlap produces greater interference, having 
a larger number of trace components in memory following 
retrieval practice, as suggested by the RAFT theory, could 
be what reduces interference.

Another theory of retrieval practice is the episodic con-
text account (Lehman et al., 2014). For this view, people 
encode both the study context and the retrieval context. 
People then use this context as part of their memory search. 
If retrieval is successful, then there is also a memory with 
the new context that can be used to help later retrieval 
(Akan et  al., 2018). While this mechanism of retrieval 
practice seems reasonable, and is supported by some data, 
it is not immediately clear how this would result in a more 
linear pattern of forgetting according to our theory given 
that the focus is on context, whereas the RAFT model uses 
additional content components to achieve linear forgetting 
patterns. One would need to assume that the different con-
texts are memory trace components that can be used to 
make correct responses, and that more of them allow for 
more accurate responses with otherwise degraded traces.

One other theory of the testing effect is the relational 
processing hypothesis (Rawson & Zamary, 2019). This 
idea is grounded in the finding that the testing effect is 
more likely, and is larger, for recall than for recognition 
during learning. Recall tests are more likely to emphasise 
relational processing, whereas recognition tests are more 
likely to emphasise item-specific processing. Relational 
processing involves making connections, helping organise 
the material, and improving performance. Thus, this the-
ory could be consistent with linear forgetting if one 
assumes that the relational processing amounts to having 
additional components to the memory traces.

In our studies, although we were manipulating the 
degree of learning, this was also likely influencing the 
number of components in the resulting memory traces 
through spontaneous elaboration and inference making on 
the part of the participants. This is important given that 
another way to increase the probability of observing linear 
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forgetting is to increase the complexity of the memory 
traces. In prior studies, the number of presentations was 
not explicitly manipulated, but likely occurred. For exam-
ple, for Bahrick et al.’s (1975) study, participants certainly 
had repeated exposure to classmate’s names, along with a 
wide range of other experiences involving those people. 
For autobiographical experience studies (e.g., Jeunehomme 
et al., 2018; Kristo et al., 2009; Linton, 1982; Wagenaar, 
1986), these likely involved extensive inference genera-
tion as part of understating the events of one’s own life, 
thus rending the memory traces much more complex. A 
similar case can be made for the people hearing about 
news events in Meeter et al.’s (2005) study.

The progress of forgetting

The finding of linear forgetting is important for under-
standing the progress of memory over time. Science should 
be able to provide reasonably accurate predictions. One of 
the most important things that we can predict as memory 
researchers is how much information from a given event is 
likely to be remembered after a given period. To have any 
hope of doing so, we need to understand the nature of the 
loss of information over time. If we simply assume that it 
is an Ebbinghaus-like negatively accelerating function, as 
most researchers do, then we will be quite right on some 
occasions, and quite wrong on others. However, if we 
acknowledge that different circumstance can alter the pro-
gress of memory over time, then we can provide more 
accurate predictions.

This ability to predict more accurately can provide use-
ful information for a wide range of applications. For exam-
ple, in education, knowing what the future of memory for 
materials learned in the classroom can better guide when 
memories for materials are likely to be retained, and when 
they may need to be refreshed. In the field of eyewitness 
memory, knowing how long different aspects of a wit-
nessed event are likely to persist can help guide an under-
standing of how memory reports may be more or less 
reliable. In the area of clinical practice, understanding the 
progress of forgetting can be helpful in understanding how 
long clients will remember information that have been told 
regarding their treatments.

Finally, knowing when different patterns of forgetting 
may emerge can be additional information that can be used 
to distinguish different theories of memory. Change over 
time is a dimension along which we can gather data that 
will either support or refute various theories of memory. 
This is certainly a more difficult way to study memory 
given that more time and data are needed to reach a con-
clusion compared with most studies of memory that test 
performance after a single retention interval. While this 
approach may be valuable under some circumstances, we 
would argue that an approach that also considers memory 
change will provide a greater depth of understanding.

Conclusion

Overall, our aim was to assess whether higher levels of 
learning would be a factor that could lead to an increase in 
linear forgetting. This is what we found, but only when there 
was additional processing involved beyond study alone. 
That is, this was more likely to occur in the presence of 
retrieval practice during learning. Thus, secondarily, these 
data also make plain heretofore unnoticed qualities of the 
testing effect. In addition to providing yet further evidence 
of linear forgetting, this finding is consistent with our theory 
of the emergence of linear forgetting following component 
loss that follows a negatively accelerating function and trace 
fragment usage. Thus, to be better able to predict memory 
over time, it needs to be understood when this process 
will be more linear than the default negatively accelerating 
function.

Author Note

Jerry S Fisher is now affiliated to University of Grand Valley.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect 
to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, 
authorship, and/or publication of this article.

ORCID iDs

Jerry S Fisher  https://orcid.org/0000-0002-0435-9251

Gabriel A Radvansky  https://orcid.org/0000-0001-7846 

-839X

Data accessibility statement

 

The data and materials from the present experiment are publicly 
available at the Open Science Framework website: https://osf.
io/7mr64

Notes

1.	 RAFT is publicly available online here: http://ec2-52-204-
56-150.compute-1.amazonaws.com/pilot/RAFT4.0.html

2.	 The details of this theory, as well as a simulation of it, are 
available elsewhere (Fisher & Radvansky, 2018, 2019).

3.	 See Wickens (1998). Of note, under exponential forgetting, 
if components are each lost at different (rather than con-
stant) probabilities, the aggregate pattern may resemble a 
power function (e.g., Anderson & Tweney, 1997).

4.	 We chose accuracy as our measurement over other measures 
such as d′. The concern for us is the amount of information 
remembered, not the ability to discriminate old from new 
items, which is what d′ measures.
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5.	 Note that we are assessing the degree to which the patterns 
of data conform to power or linear mathematical functions. 
We are not varying free parameters of the RAFT model to 
fit it to the data. Instead, the model makes predictions of 
when different alternative patterns would emerge, and we 
are testing whether model specified manipulations result in 
that qualitative difference.
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